Metar.Decoder 1.0.2

There is a newer version of this package available.
See the version list below for details.
dotnet add package Metar.Decoder --version 1.0.2                
NuGet\Install-Package Metar.Decoder -Version 1.0.2                
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="Metar.Decoder" Version="1.0.2" />                
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add Metar.Decoder --version 1.0.2                
#r "nuget: Metar.Decoder, 1.0.2"                
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
// Install Metar.Decoder as a Cake Addin
#addin nuget:?package=Metar.Decoder&version=1.0.2

// Install Metar.Decoder as a Cake Tool
#tool nuget:?package=Metar.Decoder&version=1.0.2                

C# METAR decoder

=================

Latest Stable Version NuGet

A .NET library to decode METAR strings, this library package is netstandard 2.0. Working with Net Core and NET.

This is largely based on SafranCassiopee/csharp-metar-decoder

Introduction

This piece of software is a library package that provides a parser to decode raw METAR observation.

METAR is a format made for weather information reporting. METAR weather reports are predominantly used by pilots and by meteorologists, who use it to assist in weather forecasting. Raw METAR format is highly standardized through the International Civil Aviation Organization (ICAO).

Requirements

This library package is netstandard 2.0

If you want to integrate the library easily in your project, you should consider using the official nuget package available from https://www.nuget.org/.

nuget install Metar.Decoder

It is not mandatory though.

Setup

  • With nuget.exe (recommended)

From the Package Manager Console in Visual Studio

nuget install Metar.Decoder

Add a reference to the library, then add the following using directives:

using Metar.Decoder;
using Metar.Decoder.Entity;
  • By hand

Download the latest release from github

Extract it wherever you want in your project. The library itself is in the Metar.Decoder/ directory, the other directories are not mandatory for the library to work.

Add the Metar.Decoder project to your solution, then add a reference to it in your own project. Finally, add the same using directives than above.

Usage

Instantiate the decoder and launch it on a METAR string. The returned object is a DecodedMetar object from which you can retrieve all the weather properties that have been decoded.

All values who have a unit are based on the Value object which provides the ActualValue and ActualUnit properties

Please check the DecodedMetar class for the structure of the resulting object


  var d = MetarDecoder.ParseWithMode("METAR LFPO 231027Z AUTO 24004G09MPS 2500 1000NW R32/0400 R08C/0004D +FZRA VCSN //FEW015 17/10 Q1009 REFZRA WS R03");

  //context information
  d.IsValid; //true
  d.RawMetar; //"METAR LFPO 231027Z AUTO 24004G09MPS 2500 1000NW R32/0400 R08C/0004D +FZRA VCSN //FEW015 17/10 Q1009 REFZRA WS R03"
  d.Type; //MetarType.METAR
  d.Icao; //"LFPO"
  d.Day; //23
  d.Time; //'10:27 UTC"
  d.Status; //"AUTO"

  //surface wind
  var sw = d.SurfaceWind; //SurfaceWind object
  sw.MeanDirection.ActualValue; //240
  sw.MeanSpeed.ActualValue; //4
  sw.SpeedVariations.ActualValue; //9
  sw.MeanSpeed.ActualUnit; //Value.Unit.MeterPerSecond

  //visibility
  var v = d.Visibility; //Visibility object
  v.PrevailingVisibility.ActualValue; //2500
  v.PrevailingVisibility.ActualUnit; //Value.Unit.Meter
  v.MinimumVisibility.ActualValue; //1000
  v.MinimumVisibilityDirection; //"NW"
  v.NDV; //false

  //runway visual range
  var rvr = d.RunwaysVisualRange; //RunwayVisualRange array
  rvr[0].Runway; //"32"
  rvr[0].VisualRange.ActualValue; //400
  rvr[0].PastTendency; //""
  rvr[1].Runway; //"08C"
  rvr[1].VisualRange.ActualValue; //4
  rvr[1].PastTendency; //"D"

  //present weather
  var pw = d.PresentWeather; //WeatherPhenomenon array
  pw[0].IntensityProximity; //"+"
  pw[0].Characteristics; //"FZ"
  pw[0].Types; //{ "RA" }
  pw[1].IntensityProximity; //'VC'
  pw[1].Characteristics; //null
  pw[1].Types; //{ "SN" }

  // clouds
  var cld = d.Clouds; //CloudLayer array
  cld[0].Amount; //CloudAmount.FEW
  cld[0].BaseHeight.ActualValue; //1500
  cld[0].BaseHeight.ActualUnit; //Value.Unit.Feet

  // temperature
  d.AirTemperature.ActualValue; //17
  d.AirTemperature.ActualUnit; //Value.Unit.DegreeCelsius
  d.DewPointTemperature.ActualValue; //10

  // pressure
  d.Pressure.ActualValue; //1009
  d.Pressure.ActualUnit; //Value.Unit.HectoPascal

  // recent weather
  rw = d.RecentWeather;
  rw.Characteristics; //"FZ"
  rw.Types; //{ "RA" }

  // windshears
  d.WindshearRunways; //{ "03" }

About Value objects

In the example above, it is assumed that all requested parameters are available. In the real world, some fields are not mandatory thus it is important to check that the Value object (containing both the value and its unit) is not null before using it. What you do in case it's null is totally up to you.

Here is an example:

  // check that the dew_point is not null and give it a default value if it is
  var dew_point = d.DewPointTemperature;
  if (dew_point == null) 
  {
      dew_point = new Value(999, Value.Unit.DegreeCelsius);
  }

  // dew_point object can now be accessed safely
  dew_point.ActualValue();
  dew_point.ActualUnit();

Value objects also contain their unit, that you can access with the ActualUnit property. When you access the ActualValue property, you'll get the value in this unit.

If you want to get the value directly in another unit you can call GetConvertedValue(unit). Supported values are speed, distance and pressure.

Here are all available units for conversion:

// speed units:
// Value.Unit.MeterPerSecond
// Value.Unit.KilometerPerHour
// Value.Unit.Knot

// distance units:
// Value.Unit.Meter
// Value.Unit.Feet
// Value.Unit.StatuteMile

// pressure units:
// Value.Unit.HectoPascal
// Value.Unit.MercuryInch

// use on-the-fly conversion
var distance_in_sm = visibility.GetConvertedValue(Value.Unit.StatuteMile);
var speed_kph = speed.GetConvertedValue(Value.Unit.KilometerPerHour);

About parsing errors

When an unexpected format is encountered for a part of the METAR, the parsing error is logged into the DecodedMetar object itself.

All parsing errors for one metar can be accessed through the DecodingExceptions property.

By default parsing will continue when a bad format is encountered. But the parser also provides a "strict" mode where parsing stops as soon as an error occurs. The mode can be set globally for a MetarDecoder object, or just once as you can see in this example:


var decoder = new MetarDecoder();
decoder.SetStrictParsing(true);

// change global parsing mode to "strict"
decoder.SetStrictParsing(true);

// this parsing will be made with strict mode
decoder.Parse("...");

// but this one will ignore global mode and will be made with not-strict mode anyway
decoder.ParseNotStrict("...");

// change global parsing mode to "not-strict"
decoder.SetStrictParsing(false);

// this parsing will be made with no-strict mode
decoder.Parse("...");

// but this one will ignore global mode and will be made with strict mode anyway
decoder.ParseStrict("...");

About parsing errors, again

In non-strict mode, it is possible to get a parsing error for a given chunk decoder, while still getting the decoded information for this chunk in the end. How is that possible ?

It is because non-strict mode not only continues decoding where there is an error, it also tries the parsing again on the "next chunk" (based on whitespace separator). But all errors on first try will remain logged even if the second try suceeded.

Let's say you have this chunk AAA 12003KPH ... provided to the SurfaceWind chunk decoder. This decoder will choke on AAA, will try to decode 12003KPH and will succeed. The first exception for surface wind decoder will be kept but the SurfaceWind object will be filled with some information.

All of this does not apply to strict mode as parsing is interrupted on first parsing error in this case.

Contribute

If you find a valid METAR that is badly parsed by this library, please open a github issue with all possible details:

  • the full METAR causing problem
  • the parsing exception returned by the library
  • how you expected the decoder to behave
  • anything to support your proposal (links to official websites appreciated)

If you want to improve or enrich the test suite, fork the repository and submit your changes with a pull request.

If you have any other idea to improve the library, please use github issues or directly pull requests depending on what you're more comfortable with.

Product Compatible and additional computed target framework versions.
.NET net5.0 was computed.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed. 
.NET Core netcoreapp2.0 was computed.  netcoreapp2.1 was computed.  netcoreapp2.2 was computed.  netcoreapp3.0 was computed.  netcoreapp3.1 was computed. 
.NET Standard netstandard2.0 is compatible.  netstandard2.1 was computed. 
.NET Framework net461 was computed.  net462 was computed.  net463 was computed.  net47 was computed.  net471 was computed.  net472 was computed.  net48 was computed.  net481 was computed. 
MonoAndroid monoandroid was computed. 
MonoMac monomac was computed. 
MonoTouch monotouch was computed. 
Tizen tizen40 was computed.  tizen60 was computed. 
Xamarin.iOS xamarinios was computed. 
Xamarin.Mac xamarinmac was computed. 
Xamarin.TVOS xamarintvos was computed. 
Xamarin.WatchOS xamarinwatchos was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.
  • .NETStandard 2.0

    • No dependencies.

NuGet packages

This package is not used by any NuGet packages.

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last updated
1.0.5 624 3/8/2024
1.0.4 1,568 3/1/2023
1.0.3 1,811 11/9/2022
1.0.2 800 10/10/2022
1.0.1 391 10/7/2022
1.0.0 378 10/6/2022