SquareWidget.Astronomy.Core
1.2.0
Prefix Reserved
See the version list below for details.
dotnet add package SquareWidget.Astronomy.Core --version 1.2.0
NuGet\Install-Package SquareWidget.Astronomy.Core -Version 1.2.0
<PackageReference Include="SquareWidget.Astronomy.Core" Version="1.2.0" />
paket add SquareWidget.Astronomy.Core --version 1.2.0
#r "nuget: SquareWidget.Astronomy.Core, 1.2.0"
// Install SquareWidget.Astronomy.Core as a Cake Addin #addin nuget:?package=SquareWidget.Astronomy.Core&version=1.2.0 // Install SquareWidget.Astronomy.Core as a Cake Tool #tool nuget:?package=SquareWidget.Astronomy.Core&version=1.2.0
Repository
This repository is home to the SquareWidget.Astronomy.Core
code library project. This project is licensed under the GNU GPLv3 and maintained by James Still who hosts the SquareWidget blog.
SquareWidget.Astronomy.Core
SquareWidget.Astronomy.Core is a code library for .NET that supports common astronomical calculations and algorithms.
Basic Usage
Moment
A Moment
is any specific point in time down to the optional millisecond. Instantiate a Moment
with a DateTime
.
DateTime d = new(2024, 1, 31);
Moment m = new(d);
Console.WriteLine(m.ToString()); // 2024-01-31 00:00:00Z
You can pass in a decimal value for the day and its time.
Moment m = new(1957, 10, 4.812);
Console.WriteLine(m.ToString()); // 1957-10-04 19:29:17Z
Or the Julian Day Ephemeris (JD/JDE).
Moment m = new(2436116.3120023147);
Console.WriteLine(m.ToString()); // 1957-10-04 19:29:16Z
A Moment
will also return a JDE, a modified JDE, Day D, and the Time T from the J2000.0 epoch.
Moment m = new(1957, 10, 4, 7, 29, 17);
double jde = m.JDE; // 2436115.8120023147
double mdj = m.MDJ; // 36115.31200231472
double dayd = m.DayD; // -15429.18799768528
double t = m.T; // -0.42242814504271814
Units of Measure
It is necessary to have units of measure for celestial calculations and to be able to convert easily between them. We looked at the Moment
struct above. Others include:
- Degrees
- Radians
- Astronomical Units
- Delta T
- Light Time
- Nutation
- Right Ascension
- Sexagesimal Angle
- Ecliptical Coordinates
- Equitorial Coordinates
- Geocentric Position
A Degree
struct can be instantiated in several ways.
Degrees d = new(23.4328); // decimal degrees
Degrees d = new(r); // Radian struct
Degrees d = new(a); // Sexagesimal Angle struct (DMS)
In most cases ToString()
is overridden for display purposes. Units of measure can also be converted to other units.
Degrees d = new(23.4328);
Console.WriteLine(d.ToString()); // 23°.4328
Radians r = d.ToRadians(); // calling method to get radians
Radians r = new(d); // or pass in the object itself
Radians r = new(0.40897951296);
Degrees d = new(r);
Console.WriteLine(d.ToString()); // 23°.43279
Very large angles can be reduced to the [0, 360] range. Functions can be chained to produce the desired conversion and output.
Degrees d = new(25487.1873);
Console.WriteLine(d.ToReducedAngle().ToString()); // 287°.187300
Radians r = new(d);
Console.WriteLine("r0: " + r.ToString()); // 444.8353354
Console.WriteLine(r.ToReducedAngle().ToString()); // 5.0123639
Console.WriteLine(r.ToReducedAngle().ToDegrees().ToString()); // 287°.187300
A RightAscension
handles hours, minutes and seconds (HMS).
// passing in HMS
RightAscension ra = new(12, 37, 27);
Console.WriteLine(ra.ToString()); // 12h 37m 27s
// passing decimal degrees
RightAscension ra = new(189.3625);
Console.WriteLine(ra.ToString()); // 12h 37m 27s
A SexagesimalAngle
represents degrees, arcminutes, and arcseconds (DMS).
SexigesimalAngle a = new(34, 10, 49);
Console.WriteLine(a.ToString()); // +34° 10' 49"
If the angle is negative pass the sign in with any value > 0. Do not pass in -0
as this will fail.
SexigesimalAngle a = new(-0, 13, 49); // NO
SexigesimalAngle a = new(-0, -13, 49); // NO
SexigesimalAngle a = new(0, -13, 49); // YES!
SexigesimalAngle a = new(0, 0, -49); // YES!
// Example Display Output
SexigesimalAngle a = new(0, -13, 49);
Console.WriteLine(a.ToString()); // -13' 49"
Two coordinate systems have been implemented: equitorial and ecliptical. Suppose we want to model Pollux (β Gem) using an EquitorialCoordinate
:
// Pollux (β Gem)
RightAscension α = new(7, 45, 18.946);
SexigesimalAngle δ = new(28, 01, 34.26);
Degrees ε = new(23.4392911);
EquitorialCoordinates eqc = new(δ, α, ε);
Console.WriteLine(eqc.α.ToString()); // 7h 45m 18.946s
Console.WriteLine(eqc.δ.ToString()); // +28° 1' 34.26"
You can convert between the two coordinate systems:
EquitorialCoordinates eqc = new(δ, α, ε);
EclipticalCoordinates ec = eqc.ToΕclipticCoordinates();
Console.WriteLine(ec.λ.ToDegrees().ToReducedAngle().ToString()); // 113°.21
Console.WriteLine(ec.β.ToDegrees().ToString()); // 6°.68
Planets
You can instantiate a planet with the new
operator or use the factory method. You must pass in a Moment
struct either way.
DateTime datetime = new(2028, 7, 1);
Moment moment = new(datetime);
// using new operator
Earth earth = new(moment);
// using factory method for polymorphism
Planet earth = PlanetFactory.Create(PlanetName.Earth, moment);
Once you have a planet you can get that planet's orbital (Keplerian) elements. Suppose I want to know the mean, eccentric and true anomalies of Mars on 1 Jul 2028:
DateTime datetime = new(2028, 7, 1, 0, 0, 0);
Moment moment = new(datetime);
Planet planet = PlanetFactory.Create(PlanetName.Mars, moment);
OrbitalElements oe = planet.OrbitalElements;
string planetName = planet.GetType().Name;
string d = datetime.ToShortDateString();
string M = oe.M.ToReducedAngle().ToString();
string E = oe.E.ToDegrees().ToReducedAngle().ToString();
string v = oe.v.ToDegrees().ToReducedAngle().ToString();
Console.WriteLine($"{planetName} on {d}");
Console.WriteLine($"Mean anomaly (MA) of {M}");
Console.WriteLine($"Eccentric anomaly (EC) of {E}");
Console.WriteLine($"True anomaly (TA) of {v}");
/* Displays:
Mars on 7/1/2028
Mean anomaly (MA) of 73°.64204662016618
Eccentric anomaly (EC) of 78°.89475302840492
True anomaly (TA) of 84°.20292912028344
*/
A planet has its heliocentric spherical coordinates LBR in a SphericalCoordinates
object:
DateTime datetime = new(2028, 7, 1, 0, 0, 0);
Moment moment = new(datetime);
Planet planet = PlanetFactory.Create(PlanetName.Mars, moment);
SphericalCoordinates sc = planet.SphericalCoordinates;
Console.WriteLine($"{planetName} on {d}");
Console.WriteLine("L: " + sc.L.ToDegrees().ToReducedAngle().ToString());
Console.WriteLine("B: " + sc.B.ToDegrees().ToReducedAngle().ToString());
Console.WriteLine("R: " + sc.R.ToString());
/* Displays:
Mars on 7/1/2028
L: 60°.810047542251596
B: 0°.354134695931737
R: 1.4962191891309637
*/
Calculators
Calculators are standalone static classes used to compute an output. All calculators have a method Calculate
that expect one or more arguments and when called return the calculated results.
Nutation Calculator
The Nutation Calculator returns the Earth's nutation components for a given DateTime
. The algorithm uses periodic terms taken from the IAU SOFA system.
DateTime datetime = new(1987, 4, 10);
Nutation n = NutationCalculator.Calculate(datetime);
string d = datetime.ToShortDateString(); // culture en-US
string ΔΨ = n.ΔΨ.ToString();
string Δε = n.Δε.ToString();
string ε = n.ε.ToString();
Console.WriteLine($"Nutation on {d}");
Console.WriteLine($"Nutation in longitude: {ΔΨ}");
Console.WriteLine($"Nutation in latitude: {Δε}");
Console.WriteLine($"True obliquity of the ecliptic: {ε}");
/* Displays:
Nutation on 4/10/1987
Nutation in longitude: -3.84084252"
Nutation in latitude: +9.4936372"
True obliquity of the ecliptic: +23° 26' 36.87640248"
*/
Geocentric Position Calculator
The GeocentricPositionCalculator
expects a DateTime
and a planet name (target body). It returns a GeocentricPosition
object with ecliptical and equitorial coordinates, true distance, and apparent distance (in AU).
DateTime datetime = new(1992, 12, 20);
string planetName = PlanetName.Venus;
GeocentricPosition gp = GeocentricPositionCalculator.Calculate(datetime, planetName);
EclipticalCoordinates ec = gp.EclipticalCoordinates;
Degrees longitude = ec.λ.ToDegrees().ToReducedAngle();
Degrees latitude = ec.β.ToDegrees();
EquitorialCoordinates eqc = gp.EquitorialCoordinates;
AstronomicalUnits Δt = gp.Δt;
AstronomicalUnits Δa = gp.Δa;
string d = datetime.ToShortDateString(); // culture en-US
Console.WriteLine($"Geocentric position of {planetName} on {d}");
Console.WriteLine($"Ecliptical coordinates longitude {longitude} and latitude {latitude}");
Console.WriteLine($"True distance to Earth is {Δt} (AU) and apparent distance is {Δa} (AU)");
Console.WriteLine($"Equitorial coordinates RA {eqc.α} and declination {eqc.δ}");
/* Displays:
Geocentric position of Venus on 12/20/1992
Ecliptical coordinates longitude 313°.0855 and latitude -2°.0847
True distance to Earth is 0.91085 (AU) and apparent distance is 0.91095 (AU)
Equitorial coordinates RA 21h 4m 42.46s and declination -18° 53' 12.07"
*/
Solar Longitude Calculator
The SolarLongitudeCalculator
calculates the center-to-center geocentric longitude of the Sun on a given DateTime
.
DateTime datetime = new(1992, 10, 13);
Degrees p = SolarLongitudeCalculator.Calculate(datetime);
string d = datetime.ToShortDateString(); // culture en-US
Console.WriteLine($"Sun's geometric longitude on {d} is {p}");
/* Displays:
Sun's geometric longitude on 10/13/1992 is 199°.909873
*/
Saturn's Ring Position Angle Calculator
Use this calculator to find the geocentric position angle of Saturn's rings, as measured from the northern celestial pole towards the East, on a given DateTime
. The calculator expects a GeocentricPosition
of Saturn as an argument along with a DateTime
.
DateTime datetime = new(1992, 12, 16);
string planetName = PlanetName.Saturn;
GeocentricPosition gp = GeocentricPositionCalculator.Calculate(datetime, planetName);
Degrees p = SaturnRingPositionAngleCalculator.Calculate(gp, datetime);
string d = datetime.ToShortDateString(); // culture en-US
Console.WriteLine($"The position angle P of Saturn's rings on {d} is {p}");
/* Displays:
The position angle P of Saturn's rings on 12/16/1992 is 6°.7404
*/
Sundial Calculator
This calculator takes any latitude and returns the hour angles for a horizontal sundial in the range 6 AM to 6 PM. Solar noon will always be 0. The calcuator expects the latitude as a Degrees
object and returns a List<HourAngle>
where each HourAngle
has an hour (in 24-hour time) and a degree value. See my blog entry Let's Make a Sundial for a detailed explanation.
SexigesimalAngle latitude = new(51, 30, 26); // London UK
Degrees d = latitude.ToDegrees();
List<HourAngle> hourAngles = SundialCalculator.Calculate(d);
Console.WriteLine($"Latitude: {d}");
foreach (HourAngle ha in hourAngles)
{
Console.WriteLine(ha.ToString());
}
/* Displays:
Latitude: 51°.50
6 AM: -90.00
7 AM: -71.10
8 AM: -53.58
9 AM: -38.04
10 AM: -24.31
11 AM: -11.84
12 Solar Noon: 0.00
1 PM: 11.84
2 PM: 24.31
3 PM: 38.04
4 PM: 53.58
5 PM: 71.10
6 PM: 90.00
*/
Moon Phase Calculator
This calculator takes any DateRange
and returns a List<MoonPhase>
of all New, First Quarter, Full, and Last Quarter phases within that date range. The algorithm looks for the first New Moon so it will back date as needed. See my blog entry Calculate New Moon Dates for more information.
To call the calculator build a DateRange
and pass it into the MoonPhaseDatesCalculator
:
DateOnly startDate = new(2001, 1, 1);
DateOnly endDate = new(2001, 3, 31);
DateRange dateRange = new(startDate, endDate);
List<MoonPhase> list = MoonPhaseDatesCalculator.Calculate(dateRange);
foreach (var item in list)
{
Console.WriteLine(item.PhaseName + " on " +
item.Moment.ToDateTime().ToString("MM/dd/yyyy hh:mm:ss.fff tt"));
}
/* Displays:
NewMoon on 12/12/2023 11:31:56.104 PM
FirstQuarter on 12/19/2023 06:38:38.642 PM
LastQuarter on 01/04/2024 03:29:52.367 AM
FullMoon on 01/25/2024 05:53:56.037 PM
NewMoon on 01/11/2024 11:57:17.998 AM
FirstQuarter on 01/18/2024 03:52:16.562 AM
LastQuarter on 02/02/2024 11:16:32.109 PM
FullMoon on 02/24/2024 12:30:20.701 PM
NewMoon on 02/09/2024 10:59:01.823 PM
FirstQuarter on 02/16/2024 03:00:53.313 PM
LastQuarter on 03/03/2024 03:22:37.828 PM
FullMoon on 03/25/2024 07:00:16.474 AM
NewMoon on 03/10/2024 09:00:18.809 AM
FirstQuarter on 03/17/2024 04:11:41.721 AM
LastQuarter on 04/02/2024 03:14:34.767 AM
FullMoon on 04/23/2024 11:48:59.432 PM
*/
Sources
Algorithms are implemented from many sources including formulas published on Wikipedia, NASA (DeltaT), the U.S. Naval Observatory, and from Jean Meeus Astronomical Algorithms, 2nd Edition. Additionally, I benefited from consulting W. M. Smart (Textbook on Spherical Astronomy, 6th Edition) and J. L. Lawrence (Celestial Calculations). Heliocentric spherical coordinates for all planets are from the VSOP87 Theory Series D data. Last, the library uses nutations in longitude, obliquity, and the obliquity of the ecliptic from the IAU SOFA ANSI C code base.
Contributing
The code library will be stronger if there are many hands contributing to the code base. I welcome community pull requests for bug fixes, enhancements, and documentation.
Product | Versions Compatible and additional computed target framework versions. |
---|---|
.NET | net8.0 is compatible. net8.0-android was computed. net8.0-browser was computed. net8.0-ios was computed. net8.0-maccatalyst was computed. net8.0-macos was computed. net8.0-tvos was computed. net8.0-windows was computed. |
-
net8.0
- No dependencies.
NuGet packages
This package is not used by any NuGet packages.
GitHub repositories
This package is not used by any popular GitHub repositories.