YoloDotNet 1.0.0
See the version list below for details.
dotnet add package YoloDotNet --version 1.0.0
NuGet\Install-Package YoloDotNet -Version 1.0.0
<PackageReference Include="YoloDotNet" Version="1.0.0" />
paket add YoloDotNet --version 1.0.0
#r "nuget: YoloDotNet, 1.0.0"
// Install YoloDotNet as a Cake Addin #addin nuget:?package=YoloDotNet&version=1.0.0 // Install YoloDotNet as a Cake Tool #tool nuget:?package=YoloDotNet&version=1.0.0
YoloDotNet
YoloDotNet is a C# .NET 7.0 implementation of Yolov8 and ONNX runtime with CUDA
Yolov8 is a real-time object detection tool by Ultralytics. YoloDotNet is a .NET 7 implementation of Yolov8 for detecting objects in images and videos using ML.NET and the ONNX runtime with GPU acceleration using CUDA.
<sup>image from pexels.com</sup>
Requirements
When using YoloDotNet with GPU-acceleration, you need CUDA and cuDNN.
ℹ️ Before you install CUDA and cuDNN, make sure to verify the ONNX runtime's current compatibility with specific versions.
- Download and install CUDA
- Download cuDNN and follow the installation instructions
- Yolov8 model exported to ONNX format
ℹ️ For Video, you need FFmpeg and FFProbe
- Download FFMPEG
- Add FFmpeg and ffprobe to the Path-variable in your Environment Variables
Example - Image
using SixLabors.ImageSharp;
using YoloDotNet;
using YoloDotNet.Extensions;
// Instantiate a new Yolo object with your ONNX-model and CUDA
using var yolo = new Yolo(@"path\to\model.onnx");
// Load image
using var image = Image.Load<Rgb32>(@"path\to\image.jpg");
// Run inference
var results = yolo.RunInference(image);
// Draw boxes
image.DrawBoundingBoxes(results);
// Save image
image.Save(@"save\image.jpg");
Example - Video
using SixLabors.ImageSharp;
using YoloDotNet;
using YoloDotNet.Extensions;
// Instantiate a new Yolo object with your ONNX-model and CUDA
using var yolo = new Yolo(@"path\to\model.onnx");
// Run inference
yolo.RunInference(new VideoOptions
{
VideoFile = @"path\to\video.mp4",
OutputDir = @"path\to\outputfolder"
});
GPU
Object detection with GPU and GPU-Id = 0 is enabled by default
// Default setup. GPU with GPU-Id 0
using var yolo = new Yolo(@"path\to\model.onnx");
With a specific GPU-Id
// GPU with a user defined GPU-Id
using var yolo = new Yolo(@"path\to\model.onnx", true, 1);
CPU
YoloDotNet detection with CPU
// With CPU
using var yolo = new Yolo(@"path\to\model.onnx", false);
Access ONNX metadata and labels
The internal ONNX metadata such as input & output parameters, version, author, description, date along with the labels can be accessed via the yolo.OnnxModel
property.
Example:
using var yolo = new Yolo(@"path\to\model.onnx");
// ONNX metadata and labels resides inside yolo.OnnxModel
Console.WriteLine(yolo.OnnxModel);
Example:
// Instantiate a new object
using var yolo = new Yolo(@"path\to\model.onnx");
// Display metadata
foreach (var property in yolo.OnnxModel.GetType().GetProperties())
{
var value = property.GetValue(yolo.OnnxModel);
Console.WriteLine($"{property.Name,-20}{value!}");
}
// Get ONNX labels
var labels = yolo.OnnxModel.Labels;
Console.WriteLine();
Console.WriteLine($"Labels ({labels.Length}):");
Console.WriteLine(new string('-', 58));
// Display
for (var i = 0; i < labels.Length; i++)
Console.WriteLine($"index: {i,-8} label: {labels[i].Name,20} color: {labels[i].Color}");
// Output:
// InputName = images
// OutputName = output0
// Date = 2023-10-03 11:32:15
// Description = Ultralytics YOLOv8m model trained on coco.yaml
// Author = Ultralytics
// Task = detect
// License = AGPL-3.0 https://ultralytics.com/license
// Version = 8.0.181
// Stride = 32
// BatchSize = 1
// ImageSize = Size[Width = 640, Height = 640]
// Input = Input { BatchSize = 1, Channels = 3, Width = 640, Height = 640 }
// Output = Output { BatchSize = 1, Dimensions = 84, Channels = 8400 }
//
// Labels (80):
// ---------------------------------------------------------
// index: 0 label: person color: #5d8aa8
// index: 1 label: bicycle color: #f0f8ff
// index: 2 label: car color: #e32636
// index: 3 label: motorcycle color: #efdecd
// ...
References & Acknowledgements
https://github.com/ultralytics/ultralytics
Product | Versions Compatible and additional computed target framework versions. |
---|---|
.NET | net8.0 is compatible. net8.0-android was computed. net8.0-browser was computed. net8.0-ios was computed. net8.0-maccatalyst was computed. net8.0-macos was computed. net8.0-tvos was computed. net8.0-windows was computed. net9.0 was computed. net9.0-android was computed. net9.0-browser was computed. net9.0-ios was computed. net9.0-maccatalyst was computed. net9.0-macos was computed. net9.0-tvos was computed. net9.0-windows was computed. |
-
net8.0
- Microsoft.ML.OnnxRuntime.Gpu (>= 1.16.3)
- Newtonsoft.Json (>= 13.0.3)
- SixLabors.Fonts (>= 2.0.1)
- SixLabors.ImageSharp (>= 3.1.0)
- SixLabors.ImageSharp.Drawing (>= 2.1.0)
- System.Drawing.Common (>= 8.0.0)
NuGet packages (1)
Showing the top 1 NuGet packages that depend on YoloDotNet:
Package | Downloads |
---|---|
VL.YoloDotNet
YoloDotNet for VL |
GitHub repositories (1)
Showing the top 1 popular GitHub repositories that depend on YoloDotNet:
Repository | Stars |
---|---|
Webreaper/Damselfly
Damselfly is a server-based Photograph Management app. The goal of Damselfly is to index an extremely large collection of images, and allow easy search and retrieval of those images, using metadata such as the IPTC keyword tags, as well as the folder and file names. Damselfly includes support for object/face detection.
|