DiffSharp.Backends.Torch 1.0.0-preview-1044919966

This is a prerelease version of DiffSharp.Backends.Torch.
There is a newer version of this package available.
See the version list below for details.
dotnet add package DiffSharp.Backends.Torch --version 1.0.0-preview-1044919966
                    
NuGet\Install-Package DiffSharp.Backends.Torch -Version 1.0.0-preview-1044919966
                    
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-1044919966" />
                    
For projects that support PackageReference, copy this XML node into the project file to reference the package.
<PackageVersion Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-1044919966" />
                    
Directory.Packages.props
<PackageReference Include="DiffSharp.Backends.Torch" />
                    
Project file
For projects that support Central Package Management (CPM), copy this XML node into the solution Directory.Packages.props file to version the package.
paket add DiffSharp.Backends.Torch --version 1.0.0-preview-1044919966
                    
#r "nuget: DiffSharp.Backends.Torch, 1.0.0-preview-1044919966"
                    
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
#:package DiffSharp.Backends.Torch@1.0.0-preview-1044919966
                    
#:package directive can be used in C# file-based apps starting in .NET 10 preview 4. Copy this into a .cs file before any lines of code to reference the package.
#addin nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-1044919966&prerelease
                    
Install as a Cake Addin
#tool nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-1044919966&prerelease
                    
Install as a Cake Tool

Package Description

Product Compatible and additional computed target framework versions.
.NET net5.0 is compatible.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed.  net10.0 was computed.  net10.0-android was computed.  net10.0-browser was computed.  net10.0-ios was computed.  net10.0-maccatalyst was computed.  net10.0-macos was computed.  net10.0-tvos was computed.  net10.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (5)

Showing the top 5 NuGet packages that depend on DiffSharp.Backends.Torch:

Package Downloads
DiffSharp-cuda-windows

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cuda-linux

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cpu

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-lite

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

FAkka.Mathnet.Symbolic.withTensorSupported

Package Description

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last Updated
1.0.7 6,087 3/26/2022
1.0.7-preview2044360861 454 3/26/2022
1.0.7-preview1873603133 496 2/21/2022
1.0.7-preview1872895008 485 2/20/2022
1.0.7-preview1872194677 475 2/20/2022
1.0.7-preview1867437105 452 2/19/2022
1.0.7-preview1838897476 494 2/14/2022
1.0.7-preview1838869913 466 2/14/2022
1.0.6 6,716 2/9/2022
1.0.6-preview1838805210 475 2/14/2022
1.0.6-preview1838790927 554 2/14/2022
1.0.6-preview1838781533 499 2/14/2022
1.0.6-preview1838761310 462 2/14/2022
1.0.6-preview1838574327 541 2/14/2022
1.0.6-preview1838238393 495 2/13/2022
1.0.6-preview1837967313 521 2/13/2022
1.0.6-preview1837932839 342 2/13/2022
1.0.6-preview1837857091 340 2/13/2022
1.0.5 3,678 2/9/2022
1.0.4 3,829 2/8/2022
1.0.3 4,933 2/8/2022
1.0.2 4,050 2/8/2022
1.0.1 4,898 11/8/2021
1.0.0-preview-987646120 649 6/30/2021
1.0.0-preview-964642900 612 6/23/2021
1.0.0-preview-964597118 473 6/23/2021
1.0.0-preview-964532207 533 6/23/2021
1.0.0-preview-964414624 540 6/23/2021
1.0.0-preview-962665709 396 6/23/2021
1.0.0-preview-961120541 443 6/22/2021
1.0.0-preview-958984202 476 6/22/2021
1.0.0-preview-783523654 618 4/25/2021
1.0.0-preview-783503343 518 4/25/2021
1.0.0-preview-783410550 545 4/25/2021
1.0.0-preview-781810429 490 4/25/2021
1.0.0-preview-775752139 578 4/22/2021
1.0.0-preview-774228953 533 4/22/2021
1.0.0-preview-769092916 543 4/21/2021
1.0.0-preview-768013090 520 4/20/2021
1.0.0-preview-762002995 493 4/19/2021
1.0.0-preview-761040762 554 4/18/2021
1.0.0-preview-761018834 581 4/18/2021
1.0.0-preview-756065403 495 4/16/2021
1.0.0-preview-755638011 495 4/16/2021
1.0.0-preview-752421465 524 4/15/2021
1.0.0-preview-748176085 511 4/14/2021
1.0.0-preview-746203897 497 4/13/2021
1.0.0-preview-746138300 528 4/13/2021
1.0.0-preview-745205599 473 4/13/2021
1.0.0-preview-739671157 505 4/12/2021
1.0.0-preview-712483117 515 4/2/2021
1.0.0-preview-699281085 455 3/29/2021
1.0.0-preview-699125312 508 3/29/2021
1.0.0-preview-698458610 557 3/29/2021
1.0.0-preview-697743517 576 3/29/2021
1.0.0-preview-697665469 514 3/29/2021
1.0.0-preview-690194555 518 3/26/2021
1.0.0-preview-688124591 485 3/25/2021
1.0.0-preview-687886352 489 3/25/2021
1.0.0-preview-681551353 524 3/24/2021
1.0.0-preview-681104545 533 3/23/2021
1.0.0-preview-680643606 561 3/23/2021
1.0.0-preview-679950457 514 3/23/2021
1.0.0-preview-669022451 519 3/19/2021
1.0.0-preview-643151273 420 3/11/2021
1.0.0-preview-633398743 496 3/8/2021
1.0.0-preview-633348953 498 3/8/2021
1.0.0-preview-621803110 562 3/4/2021
1.0.0-preview-611561611 543 3/1/2021
1.0.0-preview-611172961 464 3/1/2021
1.0.0-preview-593196134 442 2/23/2021
1.0.0-preview-589424126 494 2/22/2021
1.0.0-preview-589402583 524 2/22/2021
1.0.0-preview-586837684 468 2/21/2021
1.0.0-preview-586440747 517 2/21/2021
1.0.0-preview-498549439 538 1/20/2021
1.0.0-preview-485581354 538 1/14/2021
1.0.0-preview-392545720 617 11/30/2020
1.0.0-preview-392233243 578 11/30/2020
1.0.0-preview-392187079 621 11/30/2020
1.0.0-preview-390203270 561 11/29/2020
1.0.0-preview-387146713 642 11/27/2020
1.0.0-preview-386097798 676 11/26/2020
1.0.0-preview-385867359 680 11/26/2020
1.0.0-preview-385523380 566 11/26/2020
1.0.0-preview-384128234 661 11/25/2020
1.0.0-preview-374537774 626 11/20/2020
1.0.0-preview-374468367 554 11/20/2020
1.0.0-preview-368681212 603 11/17/2020
1.0.0-preview-368659044 677 11/17/2020
1.0.0-preview-364746088 684 11/15/2020
1.0.0-preview-364706087 643 11/15/2020
1.0.0-preview-363372268 574 11/14/2020
1.0.0-preview-362038354 594 11/13/2020
1.0.0-preview-362004577 607 11/13/2020
1.0.0-preview-361488593 544 11/13/2020
1.0.0-preview-360710530 604 11/13/2020
1.0.0-preview-359756455 609 11/12/2020
1.0.0-preview-358333968 628 11/11/2020
1.0.0-preview-358184921 640 11/11/2020
1.0.0-preview-358174946 610 11/11/2020
1.0.0-preview-349704450 702 11/6/2020
1.0.0-preview-349564717 683 11/6/2020
1.0.0-preview-343634015 686 11/3/2020
1.0.0-preview-343610434 616 11/3/2020
1.0.0-preview-328097867 894 10/26/2020
1.0.0-preview-322875134 638 10/22/2020
1.0.0-preview-315311536 583 10/19/2020
1.0.0-preview-309180753 617 10/15/2020
1.0.0-preview-309013019 674 10/15/2020
1.0.0-preview-308920132 596 10/15/2020
1.0.0-preview-308837132 631 10/15/2020
1.0.0-preview-308751690 634 10/15/2020
1.0.0-preview-308593840 639 10/15/2020
1.0.0-preview-299173506 715 10/10/2020
1.0.0-preview-292259854 712 10/6/2020
1.0.0-preview-291985511 667 10/6/2020
1.0.0-preview-291903007 617 10/6/2020
1.0.0-preview-291722399 680 10/6/2020
1.0.0-preview-284981464 629 10/2/2020
1.0.0-preview-284595614 599 10/2/2020
1.0.0-preview-280886714 678 9/30/2020
1.0.0-preview-278989673 627 9/29/2020
1.0.0-preview-277686264 607 9/29/2020
1.0.0-preview-277653295 633 9/29/2020
1.0.0-preview-275730148 689 9/28/2020
1.0.0-preview-275727262 659 9/28/2020
1.0.0-preview-267667710 690 9/22/2020
1.0.0-preview-263264614 719 9/20/2020
1.0.0-preview-263250971 753 9/20/2020
1.0.0-preview-262623253 607 9/19/2020
1.0.0-preview-258339834 638 9/16/2020
1.0.0-preview-258210544 678 9/16/2020
1.0.0-preview-258177528 722 9/16/2020
1.0.0-preview-258119380 712 9/16/2020
1.0.0-preview-256594931 673 9/16/2020
1.0.0-preview-256435175 723 9/15/2020
1.0.0-preview-253816091 625 9/14/2020
1.0.0-preview-253197654 647 9/14/2020
1.0.0-preview-247523274 600 9/10/2020
1.0.0-preview-247118168 676 9/9/2020
1.0.0-preview-246444372 729 9/9/2020
1.0.0-preview-246434361 706 9/9/2020
1.0.0-preview-246402060 581 9/9/2020
1.0.0-preview-245105781 610 9/8/2020
1.0.0-preview-244918410 664 9/8/2020
1.0.0-preview-243478925 609 9/7/2020
1.0.0-preview-243471084 624 9/7/2020
1.0.0-preview-243323135 734 9/7/2020
1.0.0-preview-1413494063 543 11/2/2021
1.0.0-preview-1405354284 498 10/31/2021
1.0.0-preview-1338129467 540 10/13/2021
1.0.0-preview-1327345305 637 10/11/2021
1.0.0-preview-1325686991 485 10/10/2021
1.0.0-preview-1324682939 640 10/10/2021
1.0.0-preview-1239345497 556 9/15/2021
1.0.0-preview-1227879651 550 9/13/2021
1.0.0-preview-1227810778 551 9/13/2021
1.0.0-preview-1222163389 533 9/10/2021
1.0.0-preview-1177844564 561 8/28/2021
1.0.0-preview-1176119659 472 8/28/2021
1.0.0-preview-1176116073 492 8/28/2021
1.0.0-preview-1176112166 452 8/28/2021
1.0.0-preview-1172193368 482 8/26/2021
1.0.0-preview-1168287221 470 8/25/2021
1.0.0-preview-1147185155 552 8/19/2021
1.0.0-preview-1133286135 593 8/15/2021
1.0.0-preview-1118120224 573 8/10/2021
1.0.0-preview-1111420036 484 8/9/2021
1.0.0-preview-1111385512 418 8/9/2021
1.0.0-preview-1111166736 483 8/9/2021
1.0.0-preview-1088380884 505 8/1/2021
1.0.0-preview-1088311063 511 8/1/2021
1.0.0-preview-1088021240 584 8/1/2021
1.0.0-preview-1083990424 533 7/31/2021
1.0.0-preview-1080710191 499 7/30/2021
1.0.0-preview-1080701269 525 7/30/2021
1.0.0-preview-1079028054 533 7/29/2021
1.0.0-preview-1079000079 526 7/29/2021
1.0.0-preview-1078977564 586 7/29/2021
1.0.0-preview-1069218438 441 7/26/2021
1.0.0-preview-1065692127 586 7/26/2021
1.0.0-preview-1054554829 487 7/22/2021
1.0.0-preview-1054460177 548 7/22/2021
1.0.0-preview-1044919966 508 7/19/2021
1.0.0-preview-1043697034 443 7/19/2021
1.0.0-preview-1001211231 533 7/5/2021
1.0.0-preview-1001204475 503 7/5/2021
0.9.5-preview-243240046 740 9/7/2020
0.9.5-preview-243219862 764 9/7/2020