DiffSharp.Backends.Torch 1.0.0-preview-1177844564

This is a prerelease version of DiffSharp.Backends.Torch.
There is a newer version of this package available.
See the version list below for details.
dotnet add package DiffSharp.Backends.Torch --version 1.0.0-preview-1177844564
                    
NuGet\Install-Package DiffSharp.Backends.Torch -Version 1.0.0-preview-1177844564
                    
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-1177844564" />
                    
For projects that support PackageReference, copy this XML node into the project file to reference the package.
<PackageVersion Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-1177844564" />
                    
Directory.Packages.props
<PackageReference Include="DiffSharp.Backends.Torch" />
                    
Project file
For projects that support Central Package Management (CPM), copy this XML node into the solution Directory.Packages.props file to version the package.
paket add DiffSharp.Backends.Torch --version 1.0.0-preview-1177844564
                    
#r "nuget: DiffSharp.Backends.Torch, 1.0.0-preview-1177844564"
                    
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
#:package DiffSharp.Backends.Torch@1.0.0-preview-1177844564
                    
#:package directive can be used in C# file-based apps starting in .NET 10 preview 4. Copy this into a .cs file before any lines of code to reference the package.
#addin nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-1177844564&prerelease
                    
Install as a Cake Addin
#tool nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-1177844564&prerelease
                    
Install as a Cake Tool

Package Description

Product Compatible and additional computed target framework versions.
.NET net5.0 is compatible.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed.  net10.0 was computed.  net10.0-android was computed.  net10.0-browser was computed.  net10.0-ios was computed.  net10.0-maccatalyst was computed.  net10.0-macos was computed.  net10.0-tvos was computed.  net10.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (6)

Showing the top 5 NuGet packages that depend on DiffSharp.Backends.Torch:

Package Downloads
DiffSharp-cuda-windows

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cuda-linux

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cpu

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-lite

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

FAkka.Mathnet.Symbolic.withTensorSupported

Package Description

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last Updated
1.0.7 6,556 3/26/2022
1.0.7-preview2044360861 622 3/26/2022
1.0.7-preview1873603133 684 2/21/2022
1.0.7-preview1872895008 673 2/20/2022
1.0.7-preview1872194677 675 2/20/2022
1.0.7-preview1867437105 653 2/19/2022
1.0.7-preview1838897476 654 2/14/2022
1.0.7-preview1838869913 656 2/14/2022
1.0.6 6,901 2/9/2022
1.0.6-preview1838805210 656 2/14/2022
1.0.6-preview1838790927 728 2/14/2022
1.0.6-preview1838781533 660 2/14/2022
1.0.6-preview1838761310 685 2/14/2022
1.0.6-preview1838574327 745 2/14/2022
1.0.6-preview1838238393 689 2/13/2022
1.0.6-preview1837967313 718 2/13/2022
1.0.6-preview1837932839 489 2/13/2022
1.0.6-preview1837857091 485 2/13/2022
1.0.5 3,832 2/9/2022
1.0.4 3,996 2/8/2022
1.0.3 5,089 2/8/2022
1.0.2 4,208 2/8/2022
1.0.1 5,064 11/8/2021
1.0.0-preview-987646120 820 6/30/2021
1.0.0-preview-964642900 788 6/23/2021
1.0.0-preview-964597118 611 6/23/2021
1.0.0-preview-964532207 688 6/23/2021
1.0.0-preview-964414624 690 6/23/2021
1.0.0-preview-962665709 544 6/23/2021
1.0.0-preview-961120541 585 6/22/2021
1.0.0-preview-958984202 625 6/22/2021
1.0.0-preview-783523654 771 4/25/2021
1.0.0-preview-783503343 682 4/25/2021
1.0.0-preview-783410550 710 4/25/2021
1.0.0-preview-781810429 654 4/25/2021
1.0.0-preview-775752139 744 4/22/2021
1.0.0-preview-774228953 712 4/22/2021
1.0.0-preview-769092916 693 4/21/2021
1.0.0-preview-768013090 670 4/20/2021
1.0.0-preview-762002995 661 4/19/2021
1.0.0-preview-761040762 725 4/18/2021
1.0.0-preview-761018834 730 4/18/2021
1.0.0-preview-756065403 629 4/16/2021
1.0.0-preview-755638011 658 4/16/2021
1.0.0-preview-752421465 691 4/15/2021
1.0.0-preview-748176085 684 4/14/2021
1.0.0-preview-746203897 661 4/13/2021
1.0.0-preview-746138300 686 4/13/2021
1.0.0-preview-745205599 642 4/13/2021
1.0.0-preview-739671157 670 4/12/2021
1.0.0-preview-712483117 679 4/2/2021
1.0.0-preview-699281085 623 3/29/2021
1.0.0-preview-699125312 679 3/29/2021
1.0.0-preview-698458610 725 3/29/2021
1.0.0-preview-697743517 733 3/29/2021
1.0.0-preview-697665469 671 3/29/2021
1.0.0-preview-690194555 676 3/26/2021
1.0.0-preview-688124591 660 3/25/2021
1.0.0-preview-687886352 655 3/25/2021
1.0.0-preview-681551353 673 3/24/2021
1.0.0-preview-681104545 710 3/23/2021
1.0.0-preview-680643606 742 3/23/2021
1.0.0-preview-679950457 679 3/23/2021
1.0.0-preview-669022451 685 3/19/2021
1.0.0-preview-643151273 578 3/11/2021
1.0.0-preview-633398743 648 3/8/2021
1.0.0-preview-633348953 681 3/8/2021
1.0.0-preview-621803110 723 3/4/2021
1.0.0-preview-611561611 709 3/1/2021
1.0.0-preview-611172961 626 3/1/2021
1.0.0-preview-593196134 597 2/23/2021
1.0.0-preview-589424126 644 2/22/2021
1.0.0-preview-589402583 671 2/22/2021
1.0.0-preview-586837684 625 2/21/2021
1.0.0-preview-586440747 681 2/21/2021
1.0.0-preview-498549439 679 1/20/2021
1.0.0-preview-485581354 721 1/14/2021
1.0.0-preview-392545720 786 11/30/2020
1.0.0-preview-392233243 733 11/30/2020
1.0.0-preview-392187079 802 11/30/2020
1.0.0-preview-390203270 725 11/29/2020
1.0.0-preview-387146713 823 11/27/2020
1.0.0-preview-386097798 859 11/26/2020
1.0.0-preview-385867359 862 11/26/2020
1.0.0-preview-385523380 741 11/26/2020
1.0.0-preview-384128234 852 11/25/2020
1.0.0-preview-374537774 812 11/20/2020
1.0.0-preview-374468367 704 11/20/2020
1.0.0-preview-368681212 768 11/17/2020
1.0.0-preview-368659044 861 11/17/2020
1.0.0-preview-364746088 891 11/15/2020
1.0.0-preview-364706087 825 11/15/2020
1.0.0-preview-363372268 741 11/14/2020
1.0.0-preview-362038354 789 11/13/2020
1.0.0-preview-362004577 779 11/13/2020
1.0.0-preview-361488593 726 11/13/2020
1.0.0-preview-360710530 769 11/13/2020
1.0.0-preview-359756455 760 11/12/2020
1.0.0-preview-358333968 817 11/11/2020
1.0.0-preview-358184921 817 11/11/2020
1.0.0-preview-358174946 786 11/11/2020
1.0.0-preview-349704450 876 11/6/2020
1.0.0-preview-349564717 858 11/6/2020
1.0.0-preview-343634015 870 11/3/2020
1.0.0-preview-343610434 776 11/3/2020
1.0.0-preview-328097867 1,082 10/26/2020
1.0.0-preview-322875134 822 10/22/2020
1.0.0-preview-315311536 765 10/19/2020
1.0.0-preview-309180753 807 10/15/2020
1.0.0-preview-309013019 843 10/15/2020
1.0.0-preview-308920132 752 10/15/2020
1.0.0-preview-308837132 823 10/15/2020
1.0.0-preview-308751690 779 10/15/2020
1.0.0-preview-308593840 794 10/15/2020
1.0.0-preview-299173506 880 10/10/2020
1.0.0-preview-292259854 883 10/6/2020
1.0.0-preview-291985511 829 10/6/2020
1.0.0-preview-291903007 802 10/6/2020
1.0.0-preview-291722399 830 10/6/2020
1.0.0-preview-284981464 778 10/2/2020
1.0.0-preview-284595614 766 10/2/2020
1.0.0-preview-280886714 837 9/30/2020
1.0.0-preview-278989673 779 9/29/2020
1.0.0-preview-277686264 780 9/29/2020
1.0.0-preview-277653295 788 9/29/2020
1.0.0-preview-275730148 851 9/28/2020
1.0.0-preview-275727262 819 9/28/2020
1.0.0-preview-267667710 868 9/22/2020
1.0.0-preview-263264614 878 9/20/2020
1.0.0-preview-263250971 895 9/20/2020
1.0.0-preview-262623253 764 9/19/2020
1.0.0-preview-258339834 810 9/16/2020
1.0.0-preview-258210544 835 9/16/2020
1.0.0-preview-258177528 880 9/16/2020
1.0.0-preview-258119380 880 9/16/2020
1.0.0-preview-256594931 833 9/16/2020
1.0.0-preview-256435175 899 9/15/2020
1.0.0-preview-253816091 803 9/14/2020
1.0.0-preview-253197654 822 9/14/2020
1.0.0-preview-247523274 762 9/10/2020
1.0.0-preview-247118168 850 9/9/2020
1.0.0-preview-246444372 892 9/9/2020
1.0.0-preview-246434361 851 9/9/2020
1.0.0-preview-246402060 772 9/9/2020
1.0.0-preview-245105781 784 9/8/2020
1.0.0-preview-244918410 853 9/8/2020
1.0.0-preview-243478925 770 9/7/2020
1.0.0-preview-243471084 820 9/7/2020
1.0.0-preview-243323135 913 9/7/2020
1.0.0-preview-1413494063 713 11/2/2021
1.0.0-preview-1405354284 651 10/31/2021
1.0.0-preview-1338129467 700 10/13/2021
1.0.0-preview-1327345305 793 10/11/2021
1.0.0-preview-1325686991 636 10/10/2021
1.0.0-preview-1324682939 787 10/10/2021
1.0.0-preview-1239345497 713 9/15/2021
1.0.0-preview-1227879651 693 9/13/2021
1.0.0-preview-1227810778 699 9/13/2021
1.0.0-preview-1222163389 691 9/10/2021
1.0.0-preview-1177844564 735 8/28/2021
1.0.0-preview-1176119659 644 8/28/2021
1.0.0-preview-1176116073 647 8/28/2021
1.0.0-preview-1176112166 617 8/28/2021
1.0.0-preview-1172193368 638 8/26/2021
1.0.0-preview-1168287221 622 8/25/2021
1.0.0-preview-1147185155 712 8/19/2021
1.0.0-preview-1133286135 757 8/15/2021
1.0.0-preview-1118120224 721 8/10/2021
1.0.0-preview-1111420036 637 8/9/2021
1.0.0-preview-1111385512 575 8/9/2021
1.0.0-preview-1111166736 632 8/9/2021
1.0.0-preview-1088380884 664 8/1/2021
1.0.0-preview-1088311063 665 8/1/2021
1.0.0-preview-1088021240 742 8/1/2021
1.0.0-preview-1083990424 686 7/31/2021
1.0.0-preview-1080710191 669 7/30/2021
1.0.0-preview-1080701269 692 7/30/2021
1.0.0-preview-1079028054 693 7/29/2021
1.0.0-preview-1079000079 696 7/29/2021
1.0.0-preview-1078977564 767 7/29/2021
1.0.0-preview-1069218438 603 7/26/2021
1.0.0-preview-1065692127 729 7/26/2021
1.0.0-preview-1054554829 647 7/22/2021
1.0.0-preview-1054460177 700 7/22/2021
1.0.0-preview-1044919966 695 7/19/2021
1.0.0-preview-1043697034 590 7/19/2021
1.0.0-preview-1001211231 685 7/5/2021
1.0.0-preview-1001204475 679 7/5/2021
0.9.5-preview-243240046 900 9/7/2020
0.9.5-preview-243219862 960 9/7/2020