DiffSharp.Backends.Torch 1.0.6-preview1837857091

This is a prerelease version of DiffSharp.Backends.Torch.
There is a newer version of this package available.
See the version list below for details.
dotnet add package DiffSharp.Backends.Torch --version 1.0.6-preview1837857091
                    
NuGet\Install-Package DiffSharp.Backends.Torch -Version 1.0.6-preview1837857091
                    
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="DiffSharp.Backends.Torch" Version="1.0.6-preview1837857091" />
                    
For projects that support PackageReference, copy this XML node into the project file to reference the package.
<PackageVersion Include="DiffSharp.Backends.Torch" Version="1.0.6-preview1837857091" />
                    
Directory.Packages.props
<PackageReference Include="DiffSharp.Backends.Torch" />
                    
Project file
For projects that support Central Package Management (CPM), copy this XML node into the solution Directory.Packages.props file to version the package.
paket add DiffSharp.Backends.Torch --version 1.0.6-preview1837857091
                    
#r "nuget: DiffSharp.Backends.Torch, 1.0.6-preview1837857091"
                    
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
#:package DiffSharp.Backends.Torch@1.0.6-preview1837857091
                    
#:package directive can be used in C# file-based apps starting in .NET 10 preview 4. Copy this into a .cs file before any lines of code to reference the package.
#addin nuget:?package=DiffSharp.Backends.Torch&version=1.0.6-preview1837857091&prerelease
                    
Install as a Cake Addin
#tool nuget:?package=DiffSharp.Backends.Torch&version=1.0.6-preview1837857091&prerelease
                    
Install as a Cake Tool

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

Product Compatible and additional computed target framework versions.
.NET net5.0 is compatible.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed.  net10.0 was computed.  net10.0-android was computed.  net10.0-browser was computed.  net10.0-ios was computed.  net10.0-maccatalyst was computed.  net10.0-macos was computed.  net10.0-tvos was computed.  net10.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (5)

Showing the top 5 NuGet packages that depend on DiffSharp.Backends.Torch:

Package Downloads
DiffSharp-cuda-windows

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cuda-linux

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cpu

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-lite

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

FAkka.Mathnet.Symbolic.withTensorSupported

Package Description

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last Updated
1.0.7 6,409 3/26/2022
1.0.7-preview2044360861 584 3/26/2022
1.0.7-preview1873603133 639 2/21/2022
1.0.7-preview1872895008 621 2/20/2022
1.0.7-preview1872194677 614 2/20/2022
1.0.7-preview1867437105 597 2/19/2022
1.0.7-preview1838897476 618 2/14/2022
1.0.7-preview1838869913 603 2/14/2022
1.0.6 6,834 2/9/2022
1.0.6-preview1838805210 603 2/14/2022
1.0.6-preview1838790927 689 2/14/2022
1.0.6-preview1838781533 599 2/14/2022
1.0.6-preview1838761310 628 2/14/2022
1.0.6-preview1838574327 682 2/14/2022
1.0.6-preview1838238393 628 2/13/2022
1.0.6-preview1837967313 659 2/13/2022
1.0.6-preview1837932839 443 2/13/2022
1.0.6-preview1837857091 440 2/13/2022
1.0.5 3,780 2/9/2022
1.0.4 3,944 2/8/2022
1.0.3 5,046 2/8/2022
1.0.2 4,161 2/8/2022
1.0.1 5,013 11/8/2021
1.0.0-preview-987646120 776 6/30/2021
1.0.0-preview-964642900 744 6/23/2021
1.0.0-preview-964597118 577 6/23/2021
1.0.0-preview-964532207 639 6/23/2021
1.0.0-preview-964414624 647 6/23/2021
1.0.0-preview-962665709 494 6/23/2021
1.0.0-preview-961120541 537 6/22/2021
1.0.0-preview-958984202 580 6/22/2021
1.0.0-preview-783523654 723 4/25/2021
1.0.0-preview-783503343 626 4/25/2021
1.0.0-preview-783410550 660 4/25/2021
1.0.0-preview-781810429 605 4/25/2021
1.0.0-preview-775752139 698 4/22/2021
1.0.0-preview-774228953 659 4/22/2021
1.0.0-preview-769092916 646 4/21/2021
1.0.0-preview-768013090 624 4/20/2021
1.0.0-preview-762002995 609 4/19/2021
1.0.0-preview-761040762 676 4/18/2021
1.0.0-preview-761018834 684 4/18/2021
1.0.0-preview-756065403 580 4/16/2021
1.0.0-preview-755638011 607 4/16/2021
1.0.0-preview-752421465 637 4/15/2021
1.0.0-preview-748176085 635 4/14/2021
1.0.0-preview-746203897 608 4/13/2021
1.0.0-preview-746138300 637 4/13/2021
1.0.0-preview-745205599 594 4/13/2021
1.0.0-preview-739671157 627 4/12/2021
1.0.0-preview-712483117 628 4/2/2021
1.0.0-preview-699281085 573 3/29/2021
1.0.0-preview-699125312 625 3/29/2021
1.0.0-preview-698458610 672 3/29/2021
1.0.0-preview-697743517 694 3/29/2021
1.0.0-preview-697665469 626 3/29/2021
1.0.0-preview-690194555 628 3/26/2021
1.0.0-preview-688124591 616 3/25/2021
1.0.0-preview-687886352 614 3/25/2021
1.0.0-preview-681551353 629 3/24/2021
1.0.0-preview-681104545 658 3/23/2021
1.0.0-preview-680643606 698 3/23/2021
1.0.0-preview-679950457 625 3/23/2021
1.0.0-preview-669022451 636 3/19/2021
1.0.0-preview-643151273 531 3/11/2021
1.0.0-preview-633398743 601 3/8/2021
1.0.0-preview-633348953 630 3/8/2021
1.0.0-preview-621803110 677 3/4/2021
1.0.0-preview-611561611 666 3/1/2021
1.0.0-preview-611172961 577 3/1/2021
1.0.0-preview-593196134 553 2/23/2021
1.0.0-preview-589424126 601 2/22/2021
1.0.0-preview-589402583 628 2/22/2021
1.0.0-preview-586837684 584 2/21/2021
1.0.0-preview-586440747 631 2/21/2021
1.0.0-preview-498549439 625 1/20/2021
1.0.0-preview-485581354 671 1/14/2021
1.0.0-preview-392545720 733 11/30/2020
1.0.0-preview-392233243 687 11/30/2020
1.0.0-preview-392187079 754 11/30/2020
1.0.0-preview-390203270 672 11/29/2020
1.0.0-preview-387146713 767 11/27/2020
1.0.0-preview-386097798 805 11/26/2020
1.0.0-preview-385867359 812 11/26/2020
1.0.0-preview-385523380 695 11/26/2020
1.0.0-preview-384128234 793 11/25/2020
1.0.0-preview-374537774 760 11/20/2020
1.0.0-preview-374468367 651 11/20/2020
1.0.0-preview-368681212 707 11/17/2020
1.0.0-preview-368659044 804 11/17/2020
1.0.0-preview-364746088 830 11/15/2020
1.0.0-preview-364706087 765 11/15/2020
1.0.0-preview-363372268 684 11/14/2020
1.0.0-preview-362038354 728 11/13/2020
1.0.0-preview-362004577 723 11/13/2020
1.0.0-preview-361488593 677 11/13/2020
1.0.0-preview-360710530 719 11/13/2020
1.0.0-preview-359756455 713 11/12/2020
1.0.0-preview-358333968 762 11/11/2020
1.0.0-preview-358184921 766 11/11/2020
1.0.0-preview-358174946 723 11/11/2020
1.0.0-preview-349704450 824 11/6/2020
1.0.0-preview-349564717 801 11/6/2020
1.0.0-preview-343634015 813 11/3/2020
1.0.0-preview-343610434 725 11/3/2020
1.0.0-preview-328097867 1,023 10/26/2020
1.0.0-preview-322875134 766 10/22/2020
1.0.0-preview-315311536 708 10/19/2020
1.0.0-preview-309180753 750 10/15/2020
1.0.0-preview-309013019 781 10/15/2020
1.0.0-preview-308920132 698 10/15/2020
1.0.0-preview-308837132 761 10/15/2020
1.0.0-preview-308751690 727 10/15/2020
1.0.0-preview-308593840 737 10/15/2020
1.0.0-preview-299173506 820 10/10/2020
1.0.0-preview-292259854 828 10/6/2020
1.0.0-preview-291985511 773 10/6/2020
1.0.0-preview-291903007 747 10/6/2020
1.0.0-preview-291722399 782 10/6/2020
1.0.0-preview-284981464 730 10/2/2020
1.0.0-preview-284595614 708 10/2/2020
1.0.0-preview-280886714 785 9/30/2020
1.0.0-preview-278989673 724 9/29/2020
1.0.0-preview-277686264 722 9/29/2020
1.0.0-preview-277653295 727 9/29/2020
1.0.0-preview-275730148 797 9/28/2020
1.0.0-preview-275727262 773 9/28/2020
1.0.0-preview-267667710 809 9/22/2020
1.0.0-preview-263264614 827 9/20/2020
1.0.0-preview-263250971 846 9/20/2020
1.0.0-preview-262623253 716 9/19/2020
1.0.0-preview-258339834 748 9/16/2020
1.0.0-preview-258210544 791 9/16/2020
1.0.0-preview-258177528 829 9/16/2020
1.0.0-preview-258119380 824 9/16/2020
1.0.0-preview-256594931 780 9/16/2020
1.0.0-preview-256435175 853 9/15/2020
1.0.0-preview-253816091 746 9/14/2020
1.0.0-preview-253197654 774 9/14/2020
1.0.0-preview-247523274 710 9/10/2020
1.0.0-preview-247118168 800 9/9/2020
1.0.0-preview-246444372 843 9/9/2020
1.0.0-preview-246434361 801 9/9/2020
1.0.0-preview-246402060 719 9/9/2020
1.0.0-preview-245105781 736 9/8/2020
1.0.0-preview-244918410 799 9/8/2020
1.0.0-preview-243478925 725 9/7/2020
1.0.0-preview-243471084 755 9/7/2020
1.0.0-preview-243323135 855 9/7/2020
1.0.0-preview-1413494063 668 11/2/2021
1.0.0-preview-1405354284 601 10/31/2021
1.0.0-preview-1338129467 652 10/13/2021
1.0.0-preview-1327345305 741 10/11/2021
1.0.0-preview-1325686991 588 10/10/2021
1.0.0-preview-1324682939 735 10/10/2021
1.0.0-preview-1239345497 667 9/15/2021
1.0.0-preview-1227879651 650 9/13/2021
1.0.0-preview-1227810778 654 9/13/2021
1.0.0-preview-1222163389 640 9/10/2021
1.0.0-preview-1177844564 681 8/28/2021
1.0.0-preview-1176119659 589 8/28/2021
1.0.0-preview-1176116073 599 8/28/2021
1.0.0-preview-1176112166 567 8/28/2021
1.0.0-preview-1172193368 585 8/26/2021
1.0.0-preview-1168287221 575 8/25/2021
1.0.0-preview-1147185155 667 8/19/2021
1.0.0-preview-1133286135 709 8/15/2021
1.0.0-preview-1118120224 680 8/10/2021
1.0.0-preview-1111420036 594 8/9/2021
1.0.0-preview-1111385512 530 8/9/2021
1.0.0-preview-1111166736 583 8/9/2021
1.0.0-preview-1088380884 617 8/1/2021
1.0.0-preview-1088311063 618 8/1/2021
1.0.0-preview-1088021240 698 8/1/2021
1.0.0-preview-1083990424 636 7/31/2021
1.0.0-preview-1080710191 619 7/30/2021
1.0.0-preview-1080701269 644 7/30/2021
1.0.0-preview-1079028054 645 7/29/2021
1.0.0-preview-1079000079 650 7/29/2021
1.0.0-preview-1078977564 723 7/29/2021
1.0.0-preview-1069218438 549 7/26/2021
1.0.0-preview-1065692127 684 7/26/2021
1.0.0-preview-1054554829 604 7/22/2021
1.0.0-preview-1054460177 659 7/22/2021
1.0.0-preview-1044919966 638 7/19/2021
1.0.0-preview-1043697034 543 7/19/2021
1.0.0-preview-1001211231 638 7/5/2021
1.0.0-preview-1001204475 629 7/5/2021
0.9.5-preview-243240046 847 9/7/2020
0.9.5-preview-243219862 907 9/7/2020