DiffSharp.Backends.Torch 1.0.0-preview-687886352

This is a prerelease version of DiffSharp.Backends.Torch.
There is a newer version of this package available.
See the version list below for details.
dotnet add package DiffSharp.Backends.Torch --version 1.0.0-preview-687886352
                    
NuGet\Install-Package DiffSharp.Backends.Torch -Version 1.0.0-preview-687886352
                    
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-687886352" />
                    
For projects that support PackageReference, copy this XML node into the project file to reference the package.
<PackageVersion Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-687886352" />
                    
Directory.Packages.props
<PackageReference Include="DiffSharp.Backends.Torch" />
                    
Project file
For projects that support Central Package Management (CPM), copy this XML node into the solution Directory.Packages.props file to version the package.
paket add DiffSharp.Backends.Torch --version 1.0.0-preview-687886352
                    
#r "nuget: DiffSharp.Backends.Torch, 1.0.0-preview-687886352"
                    
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
#:package DiffSharp.Backends.Torch@1.0.0-preview-687886352
                    
#:package directive can be used in C# file-based apps starting in .NET 10 preview 4. Copy this into a .cs file before any lines of code to reference the package.
#addin nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-687886352&prerelease
                    
Install as a Cake Addin
#tool nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-687886352&prerelease
                    
Install as a Cake Tool

Package Description

Product Compatible and additional computed target framework versions.
.NET net5.0 is compatible.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed.  net10.0 was computed.  net10.0-android was computed.  net10.0-browser was computed.  net10.0-ios was computed.  net10.0-maccatalyst was computed.  net10.0-macos was computed.  net10.0-tvos was computed.  net10.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (5)

Showing the top 5 NuGet packages that depend on DiffSharp.Backends.Torch:

Package Downloads
DiffSharp-cuda-windows

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cuda-linux

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cpu

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-lite

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

FAkka.Mathnet.Symbolic.withTensorSupported

Package Description

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last Updated
1.0.7 6,162 3/26/2022
1.0.7-preview2044360861 478 3/26/2022
1.0.7-preview1873603133 526 2/21/2022
1.0.7-preview1872895008 516 2/20/2022
1.0.7-preview1872194677 500 2/20/2022
1.0.7-preview1867437105 480 2/19/2022
1.0.7-preview1838897476 520 2/14/2022
1.0.7-preview1838869913 494 2/14/2022
1.0.6 6,742 2/9/2022
1.0.6-preview1838805210 504 2/14/2022
1.0.6-preview1838790927 579 2/14/2022
1.0.6-preview1838781533 528 2/14/2022
1.0.6-preview1838761310 488 2/14/2022
1.0.6-preview1838574327 570 2/14/2022
1.0.6-preview1838238393 523 2/13/2022
1.0.6-preview1837967313 551 2/13/2022
1.0.6-preview1837932839 371 2/13/2022
1.0.6-preview1837857091 366 2/13/2022
1.0.5 3,707 2/9/2022
1.0.4 3,855 2/8/2022
1.0.3 4,960 2/8/2022
1.0.2 4,083 2/8/2022
1.0.1 4,924 11/8/2021
1.0.0-preview-987646120 683 6/30/2021
1.0.0-preview-964642900 642 6/23/2021
1.0.0-preview-964597118 499 6/23/2021
1.0.0-preview-964532207 562 6/23/2021
1.0.0-preview-964414624 567 6/23/2021
1.0.0-preview-962665709 427 6/23/2021
1.0.0-preview-961120541 477 6/22/2021
1.0.0-preview-958984202 505 6/22/2021
1.0.0-preview-783523654 647 4/25/2021
1.0.0-preview-783503343 547 4/25/2021
1.0.0-preview-783410550 580 4/25/2021
1.0.0-preview-781810429 520 4/25/2021
1.0.0-preview-775752139 607 4/22/2021
1.0.0-preview-774228953 563 4/22/2021
1.0.0-preview-769092916 574 4/21/2021
1.0.0-preview-768013090 546 4/20/2021
1.0.0-preview-762002995 527 4/19/2021
1.0.0-preview-761040762 585 4/18/2021
1.0.0-preview-761018834 612 4/18/2021
1.0.0-preview-756065403 523 4/16/2021
1.0.0-preview-755638011 524 4/16/2021
1.0.0-preview-752421465 555 4/15/2021
1.0.0-preview-748176085 539 4/14/2021
1.0.0-preview-746203897 525 4/13/2021
1.0.0-preview-746138300 556 4/13/2021
1.0.0-preview-745205599 503 4/13/2021
1.0.0-preview-739671157 533 4/12/2021
1.0.0-preview-712483117 543 4/2/2021
1.0.0-preview-699281085 480 3/29/2021
1.0.0-preview-699125312 536 3/29/2021
1.0.0-preview-698458610 583 3/29/2021
1.0.0-preview-697743517 604 3/29/2021
1.0.0-preview-697665469 542 3/29/2021
1.0.0-preview-690194555 548 3/26/2021
1.0.0-preview-688124591 514 3/25/2021
1.0.0-preview-687886352 513 3/25/2021
1.0.0-preview-681551353 554 3/24/2021
1.0.0-preview-681104545 561 3/23/2021
1.0.0-preview-680643606 592 3/23/2021
1.0.0-preview-679950457 538 3/23/2021
1.0.0-preview-669022451 548 3/19/2021
1.0.0-preview-643151273 446 3/11/2021
1.0.0-preview-633398743 527 3/8/2021
1.0.0-preview-633348953 529 3/8/2021
1.0.0-preview-621803110 591 3/4/2021
1.0.0-preview-611561611 577 3/1/2021
1.0.0-preview-611172961 495 3/1/2021
1.0.0-preview-593196134 468 2/23/2021
1.0.0-preview-589424126 522 2/22/2021
1.0.0-preview-589402583 550 2/22/2021
1.0.0-preview-586837684 497 2/21/2021
1.0.0-preview-586440747 544 2/21/2021
1.0.0-preview-498549439 567 1/20/2021
1.0.0-preview-485581354 589 1/14/2021
1.0.0-preview-392545720 649 11/30/2020
1.0.0-preview-392233243 612 11/30/2020
1.0.0-preview-392187079 650 11/30/2020
1.0.0-preview-390203270 588 11/29/2020
1.0.0-preview-387146713 671 11/27/2020
1.0.0-preview-386097798 711 11/26/2020
1.0.0-preview-385867359 712 11/26/2020
1.0.0-preview-385523380 593 11/26/2020
1.0.0-preview-384128234 691 11/25/2020
1.0.0-preview-374537774 660 11/20/2020
1.0.0-preview-374468367 584 11/20/2020
1.0.0-preview-368681212 630 11/17/2020
1.0.0-preview-368659044 708 11/17/2020
1.0.0-preview-364746088 726 11/15/2020
1.0.0-preview-364706087 673 11/15/2020
1.0.0-preview-363372268 603 11/14/2020
1.0.0-preview-362038354 628 11/13/2020
1.0.0-preview-362004577 640 11/13/2020
1.0.0-preview-361488593 576 11/13/2020
1.0.0-preview-360710530 630 11/13/2020
1.0.0-preview-359756455 635 11/12/2020
1.0.0-preview-358333968 660 11/11/2020
1.0.0-preview-358184921 669 11/11/2020
1.0.0-preview-358174946 643 11/11/2020
1.0.0-preview-349704450 736 11/6/2020
1.0.0-preview-349564717 717 11/6/2020
1.0.0-preview-343634015 716 11/3/2020
1.0.0-preview-343610434 646 11/3/2020
1.0.0-preview-328097867 930 10/26/2020
1.0.0-preview-322875134 673 10/22/2020
1.0.0-preview-315311536 615 10/19/2020
1.0.0-preview-309180753 651 10/15/2020
1.0.0-preview-309013019 711 10/15/2020
1.0.0-preview-308920132 631 10/15/2020
1.0.0-preview-308837132 661 10/15/2020
1.0.0-preview-308751690 665 10/15/2020
1.0.0-preview-308593840 672 10/15/2020
1.0.0-preview-299173506 745 10/10/2020
1.0.0-preview-292259854 743 10/6/2020
1.0.0-preview-291985511 697 10/6/2020
1.0.0-preview-291903007 646 10/6/2020
1.0.0-preview-291722399 719 10/6/2020
1.0.0-preview-284981464 658 10/2/2020
1.0.0-preview-284595614 631 10/2/2020
1.0.0-preview-280886714 709 9/30/2020
1.0.0-preview-278989673 656 9/29/2020
1.0.0-preview-277686264 641 9/29/2020
1.0.0-preview-277653295 663 9/29/2020
1.0.0-preview-275730148 722 9/28/2020
1.0.0-preview-275727262 688 9/28/2020
1.0.0-preview-267667710 719 9/22/2020
1.0.0-preview-263264614 750 9/20/2020
1.0.0-preview-263250971 783 9/20/2020
1.0.0-preview-262623253 637 9/19/2020
1.0.0-preview-258339834 665 9/16/2020
1.0.0-preview-258210544 706 9/16/2020
1.0.0-preview-258177528 754 9/16/2020
1.0.0-preview-258119380 746 9/16/2020
1.0.0-preview-256594931 706 9/16/2020
1.0.0-preview-256435175 753 9/15/2020
1.0.0-preview-253816091 657 9/14/2020
1.0.0-preview-253197654 679 9/14/2020
1.0.0-preview-247523274 633 9/10/2020
1.0.0-preview-247118168 703 9/9/2020
1.0.0-preview-246444372 762 9/9/2020
1.0.0-preview-246434361 738 9/9/2020
1.0.0-preview-246402060 610 9/9/2020
1.0.0-preview-245105781 643 9/8/2020
1.0.0-preview-244918410 698 9/8/2020
1.0.0-preview-243478925 637 9/7/2020
1.0.0-preview-243471084 658 9/7/2020
1.0.0-preview-243323135 765 9/7/2020
1.0.0-preview-1413494063 574 11/2/2021
1.0.0-preview-1405354284 528 10/31/2021
1.0.0-preview-1338129467 572 10/13/2021
1.0.0-preview-1327345305 663 10/11/2021
1.0.0-preview-1325686991 514 10/10/2021
1.0.0-preview-1324682939 669 10/10/2021
1.0.0-preview-1239345497 581 9/15/2021
1.0.0-preview-1227879651 576 9/13/2021
1.0.0-preview-1227810778 579 9/13/2021
1.0.0-preview-1222163389 563 9/10/2021
1.0.0-preview-1177844564 591 8/28/2021
1.0.0-preview-1176119659 497 8/28/2021
1.0.0-preview-1176116073 517 8/28/2021
1.0.0-preview-1176112166 483 8/28/2021
1.0.0-preview-1172193368 513 8/26/2021
1.0.0-preview-1168287221 496 8/25/2021
1.0.0-preview-1147185155 580 8/19/2021
1.0.0-preview-1133286135 620 8/15/2021
1.0.0-preview-1118120224 601 8/10/2021
1.0.0-preview-1111420036 513 8/9/2021
1.0.0-preview-1111385512 441 8/9/2021
1.0.0-preview-1111166736 508 8/9/2021
1.0.0-preview-1088380884 537 8/1/2021
1.0.0-preview-1088311063 540 8/1/2021
1.0.0-preview-1088021240 615 8/1/2021
1.0.0-preview-1083990424 562 7/31/2021
1.0.0-preview-1080710191 528 7/30/2021
1.0.0-preview-1080701269 553 7/30/2021
1.0.0-preview-1079028054 558 7/29/2021
1.0.0-preview-1079000079 556 7/29/2021
1.0.0-preview-1078977564 612 7/29/2021
1.0.0-preview-1069218438 468 7/26/2021
1.0.0-preview-1065692127 613 7/26/2021
1.0.0-preview-1054554829 513 7/22/2021
1.0.0-preview-1054460177 577 7/22/2021
1.0.0-preview-1044919966 535 7/19/2021
1.0.0-preview-1043697034 469 7/19/2021
1.0.0-preview-1001211231 562 7/5/2021
1.0.0-preview-1001204475 531 7/5/2021
0.9.5-preview-243240046 771 9/7/2020
0.9.5-preview-243219862 796 9/7/2020