DiffSharp.Backends.Torch 1.0.0-preview-687886352

This is a prerelease version of DiffSharp.Backends.Torch.
There is a newer version of this package available.
See the version list below for details.
dotnet add package DiffSharp.Backends.Torch --version 1.0.0-preview-687886352
                    
NuGet\Install-Package DiffSharp.Backends.Torch -Version 1.0.0-preview-687886352
                    
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-687886352" />
                    
For projects that support PackageReference, copy this XML node into the project file to reference the package.
<PackageVersion Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-687886352" />
                    
Directory.Packages.props
<PackageReference Include="DiffSharp.Backends.Torch" />
                    
Project file
For projects that support Central Package Management (CPM), copy this XML node into the solution Directory.Packages.props file to version the package.
paket add DiffSharp.Backends.Torch --version 1.0.0-preview-687886352
                    
#r "nuget: DiffSharp.Backends.Torch, 1.0.0-preview-687886352"
                    
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
#:package DiffSharp.Backends.Torch@1.0.0-preview-687886352
                    
#:package directive can be used in C# file-based apps starting in .NET 10 preview 4. Copy this into a .cs file before any lines of code to reference the package.
#addin nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-687886352&prerelease
                    
Install as a Cake Addin
#tool nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-687886352&prerelease
                    
Install as a Cake Tool

Package Description

Product Compatible and additional computed target framework versions.
.NET net5.0 is compatible.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed.  net10.0 was computed.  net10.0-android was computed.  net10.0-browser was computed.  net10.0-ios was computed.  net10.0-maccatalyst was computed.  net10.0-macos was computed.  net10.0-tvos was computed.  net10.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (5)

Showing the top 5 NuGet packages that depend on DiffSharp.Backends.Torch:

Package Downloads
DiffSharp-cuda-windows

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cuda-linux

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cpu

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-lite

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

FAkka.Mathnet.Symbolic.withTensorSupported

Package Description

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last Updated
1.0.7 6,487 3/26/2022
1.0.7-preview2044360861 598 3/26/2022
1.0.7-preview1873603133 654 2/21/2022
1.0.7-preview1872895008 643 2/20/2022
1.0.7-preview1872194677 646 2/20/2022
1.0.7-preview1867437105 627 2/19/2022
1.0.7-preview1838897476 628 2/14/2022
1.0.7-preview1838869913 629 2/14/2022
1.0.6 6,862 2/9/2022
1.0.6-preview1838805210 626 2/14/2022
1.0.6-preview1838790927 703 2/14/2022
1.0.6-preview1838781533 624 2/14/2022
1.0.6-preview1838761310 656 2/14/2022
1.0.6-preview1838574327 715 2/14/2022
1.0.6-preview1838238393 652 2/13/2022
1.0.6-preview1837967313 686 2/13/2022
1.0.6-preview1837932839 457 2/13/2022
1.0.6-preview1837857091 458 2/13/2022
1.0.5 3,800 2/9/2022
1.0.4 3,964 2/8/2022
1.0.3 5,063 2/8/2022
1.0.2 4,179 2/8/2022
1.0.1 5,027 11/8/2021
1.0.0-preview-987646120 794 6/30/2021
1.0.0-preview-964642900 761 6/23/2021
1.0.0-preview-964597118 591 6/23/2021
1.0.0-preview-964532207 657 6/23/2021
1.0.0-preview-964414624 664 6/23/2021
1.0.0-preview-962665709 512 6/23/2021
1.0.0-preview-961120541 559 6/22/2021
1.0.0-preview-958984202 597 6/22/2021
1.0.0-preview-783523654 740 4/25/2021
1.0.0-preview-783503343 645 4/25/2021
1.0.0-preview-783410550 678 4/25/2021
1.0.0-preview-781810429 624 4/25/2021
1.0.0-preview-775752139 714 4/22/2021
1.0.0-preview-774228953 679 4/22/2021
1.0.0-preview-769092916 663 4/21/2021
1.0.0-preview-768013090 645 4/20/2021
1.0.0-preview-762002995 631 4/19/2021
1.0.0-preview-761040762 696 4/18/2021
1.0.0-preview-761018834 702 4/18/2021
1.0.0-preview-756065403 599 4/16/2021
1.0.0-preview-755638011 626 4/16/2021
1.0.0-preview-752421465 660 4/15/2021
1.0.0-preview-748176085 659 4/14/2021
1.0.0-preview-746203897 632 4/13/2021
1.0.0-preview-746138300 659 4/13/2021
1.0.0-preview-745205599 614 4/13/2021
1.0.0-preview-739671157 642 4/12/2021
1.0.0-preview-712483117 643 4/2/2021
1.0.0-preview-699281085 591 3/29/2021
1.0.0-preview-699125312 649 3/29/2021
1.0.0-preview-698458610 693 3/29/2021
1.0.0-preview-697743517 706 3/29/2021
1.0.0-preview-697665469 647 3/29/2021
1.0.0-preview-690194555 646 3/26/2021
1.0.0-preview-688124591 629 3/25/2021
1.0.0-preview-687886352 625 3/25/2021
1.0.0-preview-681551353 646 3/24/2021
1.0.0-preview-681104545 678 3/23/2021
1.0.0-preview-680643606 719 3/23/2021
1.0.0-preview-679950457 642 3/23/2021
1.0.0-preview-669022451 655 3/19/2021
1.0.0-preview-643151273 551 3/11/2021
1.0.0-preview-633398743 618 3/8/2021
1.0.0-preview-633348953 650 3/8/2021
1.0.0-preview-621803110 691 3/4/2021
1.0.0-preview-611561611 684 3/1/2021
1.0.0-preview-611172961 594 3/1/2021
1.0.0-preview-593196134 566 2/23/2021
1.0.0-preview-589424126 612 2/22/2021
1.0.0-preview-589402583 643 2/22/2021
1.0.0-preview-586837684 598 2/21/2021
1.0.0-preview-586440747 650 2/21/2021
1.0.0-preview-498549439 650 1/20/2021
1.0.0-preview-485581354 688 1/14/2021
1.0.0-preview-392545720 756 11/30/2020
1.0.0-preview-392233243 701 11/30/2020
1.0.0-preview-392187079 771 11/30/2020
1.0.0-preview-390203270 692 11/29/2020
1.0.0-preview-387146713 787 11/27/2020
1.0.0-preview-386097798 823 11/26/2020
1.0.0-preview-385867359 826 11/26/2020
1.0.0-preview-385523380 706 11/26/2020
1.0.0-preview-384128234 815 11/25/2020
1.0.0-preview-374537774 776 11/20/2020
1.0.0-preview-374468367 670 11/20/2020
1.0.0-preview-368681212 734 11/17/2020
1.0.0-preview-368659044 820 11/17/2020
1.0.0-preview-364746088 853 11/15/2020
1.0.0-preview-364706087 788 11/15/2020
1.0.0-preview-363372268 705 11/14/2020
1.0.0-preview-362038354 751 11/13/2020
1.0.0-preview-362004577 744 11/13/2020
1.0.0-preview-361488593 694 11/13/2020
1.0.0-preview-360710530 737 11/13/2020
1.0.0-preview-359756455 727 11/12/2020
1.0.0-preview-358333968 783 11/11/2020
1.0.0-preview-358184921 785 11/11/2020
1.0.0-preview-358174946 749 11/11/2020
1.0.0-preview-349704450 843 11/6/2020
1.0.0-preview-349564717 821 11/6/2020
1.0.0-preview-343634015 836 11/3/2020
1.0.0-preview-343610434 746 11/3/2020
1.0.0-preview-328097867 1,043 10/26/2020
1.0.0-preview-322875134 784 10/22/2020
1.0.0-preview-315311536 729 10/19/2020
1.0.0-preview-309180753 770 10/15/2020
1.0.0-preview-309013019 805 10/15/2020
1.0.0-preview-308920132 715 10/15/2020
1.0.0-preview-308837132 779 10/15/2020
1.0.0-preview-308751690 744 10/15/2020
1.0.0-preview-308593840 759 10/15/2020
1.0.0-preview-299173506 843 10/10/2020
1.0.0-preview-292259854 850 10/6/2020
1.0.0-preview-291985511 796 10/6/2020
1.0.0-preview-291903007 771 10/6/2020
1.0.0-preview-291722399 798 10/6/2020
1.0.0-preview-284981464 746 10/2/2020
1.0.0-preview-284595614 731 10/2/2020
1.0.0-preview-280886714 802 9/30/2020
1.0.0-preview-278989673 744 9/29/2020
1.0.0-preview-277686264 744 9/29/2020
1.0.0-preview-277653295 750 9/29/2020
1.0.0-preview-275730148 815 9/28/2020
1.0.0-preview-275727262 785 9/28/2020
1.0.0-preview-267667710 833 9/22/2020
1.0.0-preview-263264614 843 9/20/2020
1.0.0-preview-263250971 860 9/20/2020
1.0.0-preview-262623253 733 9/19/2020
1.0.0-preview-258339834 774 9/16/2020
1.0.0-preview-258210544 803 9/16/2020
1.0.0-preview-258177528 844 9/16/2020
1.0.0-preview-258119380 845 9/16/2020
1.0.0-preview-256594931 798 9/16/2020
1.0.0-preview-256435175 871 9/15/2020
1.0.0-preview-253816091 766 9/14/2020
1.0.0-preview-253197654 790 9/14/2020
1.0.0-preview-247523274 730 9/10/2020
1.0.0-preview-247118168 813 9/9/2020
1.0.0-preview-246444372 858 9/9/2020
1.0.0-preview-246434361 817 9/9/2020
1.0.0-preview-246402060 739 9/9/2020
1.0.0-preview-245105781 753 9/8/2020
1.0.0-preview-244918410 821 9/8/2020
1.0.0-preview-243478925 738 9/7/2020
1.0.0-preview-243471084 779 9/7/2020
1.0.0-preview-243323135 878 9/7/2020
1.0.0-preview-1413494063 681 11/2/2021
1.0.0-preview-1405354284 617 10/31/2021
1.0.0-preview-1338129467 672 10/13/2021
1.0.0-preview-1327345305 763 10/11/2021
1.0.0-preview-1325686991 609 10/10/2021
1.0.0-preview-1324682939 754 10/10/2021
1.0.0-preview-1239345497 685 9/15/2021
1.0.0-preview-1227879651 664 9/13/2021
1.0.0-preview-1227810778 669 9/13/2021
1.0.0-preview-1222163389 657 9/10/2021
1.0.0-preview-1177844564 702 8/28/2021
1.0.0-preview-1176119659 608 8/28/2021
1.0.0-preview-1176116073 617 8/28/2021
1.0.0-preview-1176112166 586 8/28/2021
1.0.0-preview-1172193368 604 8/26/2021
1.0.0-preview-1168287221 593 8/25/2021
1.0.0-preview-1147185155 684 8/19/2021
1.0.0-preview-1133286135 728 8/15/2021
1.0.0-preview-1118120224 695 8/10/2021
1.0.0-preview-1111420036 610 8/9/2021
1.0.0-preview-1111385512 545 8/9/2021
1.0.0-preview-1111166736 602 8/9/2021
1.0.0-preview-1088380884 634 8/1/2021
1.0.0-preview-1088311063 639 8/1/2021
1.0.0-preview-1088021240 713 8/1/2021
1.0.0-preview-1083990424 653 7/31/2021
1.0.0-preview-1080710191 635 7/30/2021
1.0.0-preview-1080701269 662 7/30/2021
1.0.0-preview-1079028054 665 7/29/2021
1.0.0-preview-1079000079 664 7/29/2021
1.0.0-preview-1078977564 739 7/29/2021
1.0.0-preview-1069218438 574 7/26/2021
1.0.0-preview-1065692127 702 7/26/2021
1.0.0-preview-1054554829 618 7/22/2021
1.0.0-preview-1054460177 674 7/22/2021
1.0.0-preview-1044919966 657 7/19/2021
1.0.0-preview-1043697034 558 7/19/2021
1.0.0-preview-1001211231 656 7/5/2021
1.0.0-preview-1001204475 649 7/5/2021
0.9.5-preview-243240046 865 9/7/2020
0.9.5-preview-243219862 921 9/7/2020