DiffSharp.Backends.Torch 1.0.0-preview-1338129467

This is a prerelease version of DiffSharp.Backends.Torch.
There is a newer version of this package available.
See the version list below for details.
dotnet add package DiffSharp.Backends.Torch --version 1.0.0-preview-1338129467
                    
NuGet\Install-Package DiffSharp.Backends.Torch -Version 1.0.0-preview-1338129467
                    
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-1338129467" />
                    
For projects that support PackageReference, copy this XML node into the project file to reference the package.
<PackageVersion Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-1338129467" />
                    
Directory.Packages.props
<PackageReference Include="DiffSharp.Backends.Torch" />
                    
Project file
For projects that support Central Package Management (CPM), copy this XML node into the solution Directory.Packages.props file to version the package.
paket add DiffSharp.Backends.Torch --version 1.0.0-preview-1338129467
                    
#r "nuget: DiffSharp.Backends.Torch, 1.0.0-preview-1338129467"
                    
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
#:package DiffSharp.Backends.Torch@1.0.0-preview-1338129467
                    
#:package directive can be used in C# file-based apps starting in .NET 10 preview 4. Copy this into a .cs file before any lines of code to reference the package.
#addin nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-1338129467&prerelease
                    
Install as a Cake Addin
#tool nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-1338129467&prerelease
                    
Install as a Cake Tool

Package Description

Product Compatible and additional computed target framework versions.
.NET net5.0 is compatible.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed.  net10.0 was computed.  net10.0-android was computed.  net10.0-browser was computed.  net10.0-ios was computed.  net10.0-maccatalyst was computed.  net10.0-macos was computed.  net10.0-tvos was computed.  net10.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (5)

Showing the top 5 NuGet packages that depend on DiffSharp.Backends.Torch:

Package Downloads
DiffSharp-cuda-windows

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cuda-linux

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cpu

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-lite

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

FAkka.Mathnet.Symbolic.withTensorSupported

Package Description

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last Updated
1.0.7 6,184 3/26/2022
1.0.7-preview2044360861 484 3/26/2022
1.0.7-preview1873603133 533 2/21/2022
1.0.7-preview1872895008 527 2/20/2022
1.0.7-preview1872194677 507 2/20/2022
1.0.7-preview1867437105 491 2/19/2022
1.0.7-preview1838897476 526 2/14/2022
1.0.7-preview1838869913 503 2/14/2022
1.0.6 6,751 2/9/2022
1.0.6-preview1838805210 515 2/14/2022
1.0.6-preview1838790927 588 2/14/2022
1.0.6-preview1838781533 539 2/14/2022
1.0.6-preview1838761310 496 2/14/2022
1.0.6-preview1838574327 579 2/14/2022
1.0.6-preview1838238393 533 2/13/2022
1.0.6-preview1837967313 558 2/13/2022
1.0.6-preview1837932839 380 2/13/2022
1.0.6-preview1837857091 373 2/13/2022
1.0.5 3,714 2/9/2022
1.0.4 3,865 2/8/2022
1.0.3 4,969 2/8/2022
1.0.2 4,092 2/8/2022
1.0.1 4,934 11/8/2021
1.0.0-preview-987646120 691 6/30/2021
1.0.0-preview-964642900 653 6/23/2021
1.0.0-preview-964597118 508 6/23/2021
1.0.0-preview-964532207 569 6/23/2021
1.0.0-preview-964414624 575 6/23/2021
1.0.0-preview-962665709 437 6/23/2021
1.0.0-preview-961120541 486 6/22/2021
1.0.0-preview-958984202 512 6/22/2021
1.0.0-preview-783523654 654 4/25/2021
1.0.0-preview-783503343 554 4/25/2021
1.0.0-preview-783410550 589 4/25/2021
1.0.0-preview-781810429 529 4/25/2021
1.0.0-preview-775752139 616 4/22/2021
1.0.0-preview-774228953 570 4/22/2021
1.0.0-preview-769092916 582 4/21/2021
1.0.0-preview-768013090 557 4/20/2021
1.0.0-preview-762002995 534 4/19/2021
1.0.0-preview-761040762 594 4/18/2021
1.0.0-preview-761018834 620 4/18/2021
1.0.0-preview-756065403 528 4/16/2021
1.0.0-preview-755638011 537 4/16/2021
1.0.0-preview-752421465 562 4/15/2021
1.0.0-preview-748176085 549 4/14/2021
1.0.0-preview-746203897 533 4/13/2021
1.0.0-preview-746138300 562 4/13/2021
1.0.0-preview-745205599 514 4/13/2021
1.0.0-preview-739671157 544 4/12/2021
1.0.0-preview-712483117 551 4/2/2021
1.0.0-preview-699281085 492 3/29/2021
1.0.0-preview-699125312 544 3/29/2021
1.0.0-preview-698458610 594 3/29/2021
1.0.0-preview-697743517 611 3/29/2021
1.0.0-preview-697665469 553 3/29/2021
1.0.0-preview-690194555 560 3/26/2021
1.0.0-preview-688124591 520 3/25/2021
1.0.0-preview-687886352 519 3/25/2021
1.0.0-preview-681551353 562 3/24/2021
1.0.0-preview-681104545 571 3/23/2021
1.0.0-preview-680643606 598 3/23/2021
1.0.0-preview-679950457 547 3/23/2021
1.0.0-preview-669022451 558 3/19/2021
1.0.0-preview-643151273 455 3/11/2021
1.0.0-preview-633398743 534 3/8/2021
1.0.0-preview-633348953 536 3/8/2021
1.0.0-preview-621803110 600 3/4/2021
1.0.0-preview-611561611 588 3/1/2021
1.0.0-preview-611172961 503 3/1/2021
1.0.0-preview-593196134 473 2/23/2021
1.0.0-preview-589424126 527 2/22/2021
1.0.0-preview-589402583 555 2/22/2021
1.0.0-preview-586837684 504 2/21/2021
1.0.0-preview-586440747 551 2/21/2021
1.0.0-preview-498549439 576 1/20/2021
1.0.0-preview-485581354 597 1/14/2021
1.0.0-preview-392545720 660 11/30/2020
1.0.0-preview-392233243 620 11/30/2020
1.0.0-preview-392187079 660 11/30/2020
1.0.0-preview-390203270 595 11/29/2020
1.0.0-preview-387146713 678 11/27/2020
1.0.0-preview-386097798 718 11/26/2020
1.0.0-preview-385867359 720 11/26/2020
1.0.0-preview-385523380 598 11/26/2020
1.0.0-preview-384128234 700 11/25/2020
1.0.0-preview-374537774 669 11/20/2020
1.0.0-preview-374468367 594 11/20/2020
1.0.0-preview-368681212 636 11/17/2020
1.0.0-preview-368659044 717 11/17/2020
1.0.0-preview-364746088 736 11/15/2020
1.0.0-preview-364706087 682 11/15/2020
1.0.0-preview-363372268 610 11/14/2020
1.0.0-preview-362038354 638 11/13/2020
1.0.0-preview-362004577 649 11/13/2020
1.0.0-preview-361488593 583 11/13/2020
1.0.0-preview-360710530 638 11/13/2020
1.0.0-preview-359756455 641 11/12/2020
1.0.0-preview-358333968 666 11/11/2020
1.0.0-preview-358184921 674 11/11/2020
1.0.0-preview-358174946 650 11/11/2020
1.0.0-preview-349704450 742 11/6/2020
1.0.0-preview-349564717 724 11/6/2020
1.0.0-preview-343634015 721 11/3/2020
1.0.0-preview-343610434 654 11/3/2020
1.0.0-preview-328097867 939 10/26/2020
1.0.0-preview-322875134 683 10/22/2020
1.0.0-preview-315311536 624 10/19/2020
1.0.0-preview-309180753 658 10/15/2020
1.0.0-preview-309013019 719 10/15/2020
1.0.0-preview-308920132 638 10/15/2020
1.0.0-preview-308837132 671 10/15/2020
1.0.0-preview-308751690 676 10/15/2020
1.0.0-preview-308593840 685 10/15/2020
1.0.0-preview-299173506 751 10/10/2020
1.0.0-preview-292259854 749 10/6/2020
1.0.0-preview-291985511 704 10/6/2020
1.0.0-preview-291903007 658 10/6/2020
1.0.0-preview-291722399 729 10/6/2020
1.0.0-preview-284981464 663 10/2/2020
1.0.0-preview-284595614 638 10/2/2020
1.0.0-preview-280886714 716 9/30/2020
1.0.0-preview-278989673 665 9/29/2020
1.0.0-preview-277686264 650 9/29/2020
1.0.0-preview-277653295 669 9/29/2020
1.0.0-preview-275730148 729 9/28/2020
1.0.0-preview-275727262 693 9/28/2020
1.0.0-preview-267667710 726 9/22/2020
1.0.0-preview-263264614 756 9/20/2020
1.0.0-preview-263250971 788 9/20/2020
1.0.0-preview-262623253 644 9/19/2020
1.0.0-preview-258339834 674 9/16/2020
1.0.0-preview-258210544 711 9/16/2020
1.0.0-preview-258177528 759 9/16/2020
1.0.0-preview-258119380 752 9/16/2020
1.0.0-preview-256594931 715 9/16/2020
1.0.0-preview-256435175 763 9/15/2020
1.0.0-preview-253816091 664 9/14/2020
1.0.0-preview-253197654 685 9/14/2020
1.0.0-preview-247523274 639 9/10/2020
1.0.0-preview-247118168 709 9/9/2020
1.0.0-preview-246444372 771 9/9/2020
1.0.0-preview-246434361 744 9/9/2020
1.0.0-preview-246402060 621 9/9/2020
1.0.0-preview-245105781 653 9/8/2020
1.0.0-preview-244918410 705 9/8/2020
1.0.0-preview-243478925 642 9/7/2020
1.0.0-preview-243471084 667 9/7/2020
1.0.0-preview-243323135 777 9/7/2020
1.0.0-preview-1413494063 581 11/2/2021
1.0.0-preview-1405354284 539 10/31/2021
1.0.0-preview-1338129467 580 10/13/2021
1.0.0-preview-1327345305 669 10/11/2021
1.0.0-preview-1325686991 525 10/10/2021
1.0.0-preview-1324682939 679 10/10/2021
1.0.0-preview-1239345497 588 9/15/2021
1.0.0-preview-1227879651 589 9/13/2021
1.0.0-preview-1227810778 589 9/13/2021
1.0.0-preview-1222163389 573 9/10/2021
1.0.0-preview-1177844564 600 8/28/2021
1.0.0-preview-1176119659 504 8/28/2021
1.0.0-preview-1176116073 526 8/28/2021
1.0.0-preview-1176112166 491 8/28/2021
1.0.0-preview-1172193368 523 8/26/2021
1.0.0-preview-1168287221 504 8/25/2021
1.0.0-preview-1147185155 587 8/19/2021
1.0.0-preview-1133286135 628 8/15/2021
1.0.0-preview-1118120224 607 8/10/2021
1.0.0-preview-1111420036 524 8/9/2021
1.0.0-preview-1111385512 448 8/9/2021
1.0.0-preview-1111166736 517 8/9/2021
1.0.0-preview-1088380884 548 8/1/2021
1.0.0-preview-1088311063 548 8/1/2021
1.0.0-preview-1088021240 624 8/1/2021
1.0.0-preview-1083990424 571 7/31/2021
1.0.0-preview-1080710191 536 7/30/2021
1.0.0-preview-1080701269 562 7/30/2021
1.0.0-preview-1079028054 570 7/29/2021
1.0.0-preview-1079000079 566 7/29/2021
1.0.0-preview-1078977564 625 7/29/2021
1.0.0-preview-1069218438 474 7/26/2021
1.0.0-preview-1065692127 623 7/26/2021
1.0.0-preview-1054554829 526 7/22/2021
1.0.0-preview-1054460177 588 7/22/2021
1.0.0-preview-1044919966 544 7/19/2021
1.0.0-preview-1043697034 478 7/19/2021
1.0.0-preview-1001211231 572 7/5/2021
1.0.0-preview-1001204475 542 7/5/2021
0.9.5-preview-243240046 777 9/7/2020
0.9.5-preview-243219862 804 9/7/2020