DiffSharp.Backends.Torch 1.0.0-preview-1172193368

This is a prerelease version of DiffSharp.Backends.Torch.
There is a newer version of this package available.
See the version list below for details.
dotnet add package DiffSharp.Backends.Torch --version 1.0.0-preview-1172193368
                    
NuGet\Install-Package DiffSharp.Backends.Torch -Version 1.0.0-preview-1172193368
                    
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-1172193368" />
                    
For projects that support PackageReference, copy this XML node into the project file to reference the package.
<PackageVersion Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-1172193368" />
                    
Directory.Packages.props
<PackageReference Include="DiffSharp.Backends.Torch" />
                    
Project file
For projects that support Central Package Management (CPM), copy this XML node into the solution Directory.Packages.props file to version the package.
paket add DiffSharp.Backends.Torch --version 1.0.0-preview-1172193368
                    
#r "nuget: DiffSharp.Backends.Torch, 1.0.0-preview-1172193368"
                    
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
#:package DiffSharp.Backends.Torch@1.0.0-preview-1172193368
                    
#:package directive can be used in C# file-based apps starting in .NET 10 preview 4. Copy this into a .cs file before any lines of code to reference the package.
#addin nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-1172193368&prerelease
                    
Install as a Cake Addin
#tool nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-1172193368&prerelease
                    
Install as a Cake Tool

Package Description

Product Compatible and additional computed target framework versions.
.NET net5.0 is compatible.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed.  net10.0 was computed.  net10.0-android was computed.  net10.0-browser was computed.  net10.0-ios was computed.  net10.0-maccatalyst was computed.  net10.0-macos was computed.  net10.0-tvos was computed.  net10.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (5)

Showing the top 5 NuGet packages that depend on DiffSharp.Backends.Torch:

Package Downloads
DiffSharp-cuda-windows

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cuda-linux

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cpu

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-lite

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

FAkka.Mathnet.Symbolic.withTensorSupported

Package Description

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last Updated
1.0.7 6,084 3/26/2022
1.0.7-preview2044360861 453 3/26/2022
1.0.7-preview1873603133 494 2/21/2022
1.0.7-preview1872895008 482 2/20/2022
1.0.7-preview1872194677 473 2/20/2022
1.0.7-preview1867437105 450 2/19/2022
1.0.7-preview1838897476 492 2/14/2022
1.0.7-preview1838869913 463 2/14/2022
1.0.6 6,714 2/9/2022
1.0.6-preview1838805210 473 2/14/2022
1.0.6-preview1838790927 552 2/14/2022
1.0.6-preview1838781533 497 2/14/2022
1.0.6-preview1838761310 459 2/14/2022
1.0.6-preview1838574327 539 2/14/2022
1.0.6-preview1838238393 492 2/13/2022
1.0.6-preview1837967313 518 2/13/2022
1.0.6-preview1837932839 339 2/13/2022
1.0.6-preview1837857091 338 2/13/2022
1.0.5 3,676 2/9/2022
1.0.4 3,825 2/8/2022
1.0.3 4,930 2/8/2022
1.0.2 4,048 2/8/2022
1.0.1 4,895 11/8/2021
1.0.0-preview-987646120 647 6/30/2021
1.0.0-preview-964642900 610 6/23/2021
1.0.0-preview-964597118 471 6/23/2021
1.0.0-preview-964532207 531 6/23/2021
1.0.0-preview-964414624 537 6/23/2021
1.0.0-preview-962665709 393 6/23/2021
1.0.0-preview-961120541 439 6/22/2021
1.0.0-preview-958984202 474 6/22/2021
1.0.0-preview-783523654 617 4/25/2021
1.0.0-preview-783503343 517 4/25/2021
1.0.0-preview-783410550 544 4/25/2021
1.0.0-preview-781810429 486 4/25/2021
1.0.0-preview-775752139 577 4/22/2021
1.0.0-preview-774228953 531 4/22/2021
1.0.0-preview-769092916 542 4/21/2021
1.0.0-preview-768013090 518 4/20/2021
1.0.0-preview-762002995 491 4/19/2021
1.0.0-preview-761040762 553 4/18/2021
1.0.0-preview-761018834 581 4/18/2021
1.0.0-preview-756065403 493 4/16/2021
1.0.0-preview-755638011 492 4/16/2021
1.0.0-preview-752421465 521 4/15/2021
1.0.0-preview-748176085 508 4/14/2021
1.0.0-preview-746203897 495 4/13/2021
1.0.0-preview-746138300 526 4/13/2021
1.0.0-preview-745205599 471 4/13/2021
1.0.0-preview-739671157 504 4/12/2021
1.0.0-preview-712483117 512 4/2/2021
1.0.0-preview-699281085 453 3/29/2021
1.0.0-preview-699125312 507 3/29/2021
1.0.0-preview-698458610 554 3/29/2021
1.0.0-preview-697743517 573 3/29/2021
1.0.0-preview-697665469 511 3/29/2021
1.0.0-preview-690194555 516 3/26/2021
1.0.0-preview-688124591 483 3/25/2021
1.0.0-preview-687886352 487 3/25/2021
1.0.0-preview-681551353 522 3/24/2021
1.0.0-preview-681104545 532 3/23/2021
1.0.0-preview-680643606 559 3/23/2021
1.0.0-preview-679950457 511 3/23/2021
1.0.0-preview-669022451 516 3/19/2021
1.0.0-preview-643151273 418 3/11/2021
1.0.0-preview-633398743 494 3/8/2021
1.0.0-preview-633348953 496 3/8/2021
1.0.0-preview-621803110 559 3/4/2021
1.0.0-preview-611561611 540 3/1/2021
1.0.0-preview-611172961 462 3/1/2021
1.0.0-preview-593196134 440 2/23/2021
1.0.0-preview-589424126 493 2/22/2021
1.0.0-preview-589402583 523 2/22/2021
1.0.0-preview-586837684 465 2/21/2021
1.0.0-preview-586440747 515 2/21/2021
1.0.0-preview-498549439 537 1/20/2021
1.0.0-preview-485581354 535 1/14/2021
1.0.0-preview-392545720 616 11/30/2020
1.0.0-preview-392233243 577 11/30/2020
1.0.0-preview-392187079 620 11/30/2020
1.0.0-preview-390203270 559 11/29/2020
1.0.0-preview-387146713 640 11/27/2020
1.0.0-preview-386097798 673 11/26/2020
1.0.0-preview-385867359 678 11/26/2020
1.0.0-preview-385523380 564 11/26/2020
1.0.0-preview-384128234 659 11/25/2020
1.0.0-preview-374537774 623 11/20/2020
1.0.0-preview-374468367 552 11/20/2020
1.0.0-preview-368681212 601 11/17/2020
1.0.0-preview-368659044 675 11/17/2020
1.0.0-preview-364746088 682 11/15/2020
1.0.0-preview-364706087 641 11/15/2020
1.0.0-preview-363372268 572 11/14/2020
1.0.0-preview-362038354 592 11/13/2020
1.0.0-preview-362004577 605 11/13/2020
1.0.0-preview-361488593 542 11/13/2020
1.0.0-preview-360710530 602 11/13/2020
1.0.0-preview-359756455 607 11/12/2020
1.0.0-preview-358333968 626 11/11/2020
1.0.0-preview-358184921 637 11/11/2020
1.0.0-preview-358174946 608 11/11/2020
1.0.0-preview-349704450 700 11/6/2020
1.0.0-preview-349564717 680 11/6/2020
1.0.0-preview-343634015 683 11/3/2020
1.0.0-preview-343610434 614 11/3/2020
1.0.0-preview-328097867 892 10/26/2020
1.0.0-preview-322875134 635 10/22/2020
1.0.0-preview-315311536 581 10/19/2020
1.0.0-preview-309180753 615 10/15/2020
1.0.0-preview-309013019 672 10/15/2020
1.0.0-preview-308920132 593 10/15/2020
1.0.0-preview-308837132 628 10/15/2020
1.0.0-preview-308751690 632 10/15/2020
1.0.0-preview-308593840 636 10/15/2020
1.0.0-preview-299173506 713 10/10/2020
1.0.0-preview-292259854 709 10/6/2020
1.0.0-preview-291985511 665 10/6/2020
1.0.0-preview-291903007 614 10/6/2020
1.0.0-preview-291722399 678 10/6/2020
1.0.0-preview-284981464 628 10/2/2020
1.0.0-preview-284595614 597 10/2/2020
1.0.0-preview-280886714 677 9/30/2020
1.0.0-preview-278989673 625 9/29/2020
1.0.0-preview-277686264 605 9/29/2020
1.0.0-preview-277653295 630 9/29/2020
1.0.0-preview-275730148 688 9/28/2020
1.0.0-preview-275727262 658 9/28/2020
1.0.0-preview-267667710 687 9/22/2020
1.0.0-preview-263264614 718 9/20/2020
1.0.0-preview-263250971 752 9/20/2020
1.0.0-preview-262623253 605 9/19/2020
1.0.0-preview-258339834 636 9/16/2020
1.0.0-preview-258210544 676 9/16/2020
1.0.0-preview-258177528 718 9/16/2020
1.0.0-preview-258119380 710 9/16/2020
1.0.0-preview-256594931 670 9/16/2020
1.0.0-preview-256435175 721 9/15/2020
1.0.0-preview-253816091 623 9/14/2020
1.0.0-preview-253197654 645 9/14/2020
1.0.0-preview-247523274 598 9/10/2020
1.0.0-preview-247118168 674 9/9/2020
1.0.0-preview-246444372 727 9/9/2020
1.0.0-preview-246434361 705 9/9/2020
1.0.0-preview-246402060 578 9/9/2020
1.0.0-preview-245105781 607 9/8/2020
1.0.0-preview-244918410 661 9/8/2020
1.0.0-preview-243478925 607 9/7/2020
1.0.0-preview-243471084 622 9/7/2020
1.0.0-preview-243323135 732 9/7/2020
1.0.0-preview-1413494063 540 11/2/2021
1.0.0-preview-1405354284 495 10/31/2021
1.0.0-preview-1338129467 537 10/13/2021
1.0.0-preview-1327345305 634 10/11/2021
1.0.0-preview-1325686991 483 10/10/2021
1.0.0-preview-1324682939 637 10/10/2021
1.0.0-preview-1239345497 554 9/15/2021
1.0.0-preview-1227879651 548 9/13/2021
1.0.0-preview-1227810778 549 9/13/2021
1.0.0-preview-1222163389 530 9/10/2021
1.0.0-preview-1177844564 557 8/28/2021
1.0.0-preview-1176119659 470 8/28/2021
1.0.0-preview-1176116073 490 8/28/2021
1.0.0-preview-1176112166 449 8/28/2021
1.0.0-preview-1172193368 479 8/26/2021
1.0.0-preview-1168287221 468 8/25/2021
1.0.0-preview-1147185155 549 8/19/2021
1.0.0-preview-1133286135 590 8/15/2021
1.0.0-preview-1118120224 571 8/10/2021
1.0.0-preview-1111420036 481 8/9/2021
1.0.0-preview-1111385512 416 8/9/2021
1.0.0-preview-1111166736 481 8/9/2021
1.0.0-preview-1088380884 503 8/1/2021
1.0.0-preview-1088311063 508 8/1/2021
1.0.0-preview-1088021240 581 8/1/2021
1.0.0-preview-1083990424 531 7/31/2021
1.0.0-preview-1080710191 497 7/30/2021
1.0.0-preview-1080701269 523 7/30/2021
1.0.0-preview-1079028054 530 7/29/2021
1.0.0-preview-1079000079 522 7/29/2021
1.0.0-preview-1078977564 583 7/29/2021
1.0.0-preview-1069218438 438 7/26/2021
1.0.0-preview-1065692127 584 7/26/2021
1.0.0-preview-1054554829 485 7/22/2021
1.0.0-preview-1054460177 546 7/22/2021
1.0.0-preview-1044919966 505 7/19/2021
1.0.0-preview-1043697034 440 7/19/2021
1.0.0-preview-1001211231 531 7/5/2021
1.0.0-preview-1001204475 501 7/5/2021
0.9.5-preview-243240046 738 9/7/2020
0.9.5-preview-243219862 762 9/7/2020