DiffSharp.Backends.Torch 1.0.0-preview-633398743

This is a prerelease version of DiffSharp.Backends.Torch.
There is a newer version of this package available.
See the version list below for details.
dotnet add package DiffSharp.Backends.Torch --version 1.0.0-preview-633398743
                    
NuGet\Install-Package DiffSharp.Backends.Torch -Version 1.0.0-preview-633398743
                    
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-633398743" />
                    
For projects that support PackageReference, copy this XML node into the project file to reference the package.
<PackageVersion Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-633398743" />
                    
Directory.Packages.props
<PackageReference Include="DiffSharp.Backends.Torch" />
                    
Project file
For projects that support Central Package Management (CPM), copy this XML node into the solution Directory.Packages.props file to version the package.
paket add DiffSharp.Backends.Torch --version 1.0.0-preview-633398743
                    
#r "nuget: DiffSharp.Backends.Torch, 1.0.0-preview-633398743"
                    
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
#:package DiffSharp.Backends.Torch@1.0.0-preview-633398743
                    
#:package directive can be used in C# file-based apps starting in .NET 10 preview 4. Copy this into a .cs file before any lines of code to reference the package.
#addin nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-633398743&prerelease
                    
Install as a Cake Addin
#tool nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-633398743&prerelease
                    
Install as a Cake Tool

Package Description

Product Compatible and additional computed target framework versions.
.NET net5.0 is compatible.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed.  net10.0 was computed.  net10.0-android was computed.  net10.0-browser was computed.  net10.0-ios was computed.  net10.0-maccatalyst was computed.  net10.0-macos was computed.  net10.0-tvos was computed.  net10.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (5)

Showing the top 5 NuGet packages that depend on DiffSharp.Backends.Torch:

Package Downloads
DiffSharp-cuda-windows

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cuda-linux

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cpu

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-lite

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

FAkka.Mathnet.Symbolic.withTensorSupported

Package Description

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last Updated
1.0.7 6,109 3/26/2022
1.0.7-preview2044360861 465 3/26/2022
1.0.7-preview1873603133 509 2/21/2022
1.0.7-preview1872895008 498 2/20/2022
1.0.7-preview1872194677 486 2/20/2022
1.0.7-preview1867437105 463 2/19/2022
1.0.7-preview1838897476 505 2/14/2022
1.0.7-preview1838869913 479 2/14/2022
1.0.6 6,728 2/9/2022
1.0.6-preview1838805210 488 2/14/2022
1.0.6-preview1838790927 565 2/14/2022
1.0.6-preview1838781533 512 2/14/2022
1.0.6-preview1838761310 474 2/14/2022
1.0.6-preview1838574327 554 2/14/2022
1.0.6-preview1838238393 508 2/13/2022
1.0.6-preview1837967313 533 2/13/2022
1.0.6-preview1837932839 356 2/13/2022
1.0.6-preview1837857091 352 2/13/2022
1.0.5 3,692 2/9/2022
1.0.4 3,841 2/8/2022
1.0.3 4,946 2/8/2022
1.0.2 4,064 2/8/2022
1.0.1 4,910 11/8/2021
1.0.0-preview-987646120 664 6/30/2021
1.0.0-preview-964642900 624 6/23/2021
1.0.0-preview-964597118 485 6/23/2021
1.0.0-preview-964532207 545 6/23/2021
1.0.0-preview-964414624 553 6/23/2021
1.0.0-preview-962665709 410 6/23/2021
1.0.0-preview-961120541 455 6/22/2021
1.0.0-preview-958984202 489 6/22/2021
1.0.0-preview-783523654 632 4/25/2021
1.0.0-preview-783503343 531 4/25/2021
1.0.0-preview-783410550 560 4/25/2021
1.0.0-preview-781810429 506 4/25/2021
1.0.0-preview-775752139 592 4/22/2021
1.0.0-preview-774228953 545 4/22/2021
1.0.0-preview-769092916 560 4/21/2021
1.0.0-preview-768013090 532 4/20/2021
1.0.0-preview-762002995 507 4/19/2021
1.0.0-preview-761040762 567 4/18/2021
1.0.0-preview-761018834 596 4/18/2021
1.0.0-preview-756065403 508 4/16/2021
1.0.0-preview-755638011 508 4/16/2021
1.0.0-preview-752421465 539 4/15/2021
1.0.0-preview-748176085 524 4/14/2021
1.0.0-preview-746203897 510 4/13/2021
1.0.0-preview-746138300 543 4/13/2021
1.0.0-preview-745205599 487 4/13/2021
1.0.0-preview-739671157 519 4/12/2021
1.0.0-preview-712483117 527 4/2/2021
1.0.0-preview-699281085 467 3/29/2021
1.0.0-preview-699125312 521 3/29/2021
1.0.0-preview-698458610 568 3/29/2021
1.0.0-preview-697743517 588 3/29/2021
1.0.0-preview-697665469 526 3/29/2021
1.0.0-preview-690194555 532 3/26/2021
1.0.0-preview-688124591 499 3/25/2021
1.0.0-preview-687886352 501 3/25/2021
1.0.0-preview-681551353 540 3/24/2021
1.0.0-preview-681104545 546 3/23/2021
1.0.0-preview-680643606 574 3/23/2021
1.0.0-preview-679950457 526 3/23/2021
1.0.0-preview-669022451 532 3/19/2021
1.0.0-preview-643151273 432 3/11/2021
1.0.0-preview-633398743 509 3/8/2021
1.0.0-preview-633348953 510 3/8/2021
1.0.0-preview-621803110 574 3/4/2021
1.0.0-preview-611561611 558 3/1/2021
1.0.0-preview-611172961 479 3/1/2021
1.0.0-preview-593196134 453 2/23/2021
1.0.0-preview-589424126 507 2/22/2021
1.0.0-preview-589402583 536 2/22/2021
1.0.0-preview-586837684 481 2/21/2021
1.0.0-preview-586440747 529 2/21/2021
1.0.0-preview-498549439 551 1/20/2021
1.0.0-preview-485581354 551 1/14/2021
1.0.0-preview-392545720 632 11/30/2020
1.0.0-preview-392233243 592 11/30/2020
1.0.0-preview-392187079 634 11/30/2020
1.0.0-preview-390203270 573 11/29/2020
1.0.0-preview-387146713 654 11/27/2020
1.0.0-preview-386097798 689 11/26/2020
1.0.0-preview-385867359 694 11/26/2020
1.0.0-preview-385523380 577 11/26/2020
1.0.0-preview-384128234 673 11/25/2020
1.0.0-preview-374537774 640 11/20/2020
1.0.0-preview-374468367 568 11/20/2020
1.0.0-preview-368681212 615 11/17/2020
1.0.0-preview-368659044 689 11/17/2020
1.0.0-preview-364746088 703 11/15/2020
1.0.0-preview-364706087 656 11/15/2020
1.0.0-preview-363372268 586 11/14/2020
1.0.0-preview-362038354 607 11/13/2020
1.0.0-preview-362004577 622 11/13/2020
1.0.0-preview-361488593 559 11/13/2020
1.0.0-preview-360710530 615 11/13/2020
1.0.0-preview-359756455 620 11/12/2020
1.0.0-preview-358333968 641 11/11/2020
1.0.0-preview-358184921 652 11/11/2020
1.0.0-preview-358174946 624 11/11/2020
1.0.0-preview-349704450 716 11/6/2020
1.0.0-preview-349564717 698 11/6/2020
1.0.0-preview-343634015 699 11/3/2020
1.0.0-preview-343610434 629 11/3/2020
1.0.0-preview-328097867 907 10/26/2020
1.0.0-preview-322875134 653 10/22/2020
1.0.0-preview-315311536 597 10/19/2020
1.0.0-preview-309180753 632 10/15/2020
1.0.0-preview-309013019 690 10/15/2020
1.0.0-preview-308920132 608 10/15/2020
1.0.0-preview-308837132 643 10/15/2020
1.0.0-preview-308751690 647 10/15/2020
1.0.0-preview-308593840 653 10/15/2020
1.0.0-preview-299173506 728 10/10/2020
1.0.0-preview-292259854 726 10/6/2020
1.0.0-preview-291985511 680 10/6/2020
1.0.0-preview-291903007 629 10/6/2020
1.0.0-preview-291722399 693 10/6/2020
1.0.0-preview-284981464 641 10/2/2020
1.0.0-preview-284595614 612 10/2/2020
1.0.0-preview-280886714 691 9/30/2020
1.0.0-preview-278989673 639 9/29/2020
1.0.0-preview-277686264 621 9/29/2020
1.0.0-preview-277653295 647 9/29/2020
1.0.0-preview-275730148 704 9/28/2020
1.0.0-preview-275727262 672 9/28/2020
1.0.0-preview-267667710 703 9/22/2020
1.0.0-preview-263264614 733 9/20/2020
1.0.0-preview-263250971 765 9/20/2020
1.0.0-preview-262623253 621 9/19/2020
1.0.0-preview-258339834 649 9/16/2020
1.0.0-preview-258210544 690 9/16/2020
1.0.0-preview-258177528 735 9/16/2020
1.0.0-preview-258119380 727 9/16/2020
1.0.0-preview-256594931 687 9/16/2020
1.0.0-preview-256435175 735 9/15/2020
1.0.0-preview-253816091 639 9/14/2020
1.0.0-preview-253197654 661 9/14/2020
1.0.0-preview-247523274 612 9/10/2020
1.0.0-preview-247118168 687 9/9/2020
1.0.0-preview-246444372 744 9/9/2020
1.0.0-preview-246434361 719 9/9/2020
1.0.0-preview-246402060 593 9/9/2020
1.0.0-preview-245105781 623 9/8/2020
1.0.0-preview-244918410 676 9/8/2020
1.0.0-preview-243478925 620 9/7/2020
1.0.0-preview-243471084 638 9/7/2020
1.0.0-preview-243323135 747 9/7/2020
1.0.0-preview-1413494063 557 11/2/2021
1.0.0-preview-1405354284 511 10/31/2021
1.0.0-preview-1338129467 555 10/13/2021
1.0.0-preview-1327345305 650 10/11/2021
1.0.0-preview-1325686991 498 10/10/2021
1.0.0-preview-1324682939 655 10/10/2021
1.0.0-preview-1239345497 568 9/15/2021
1.0.0-preview-1227879651 563 9/13/2021
1.0.0-preview-1227810778 565 9/13/2021
1.0.0-preview-1222163389 548 9/10/2021
1.0.0-preview-1177844564 575 8/28/2021
1.0.0-preview-1176119659 483 8/28/2021
1.0.0-preview-1176116073 504 8/28/2021
1.0.0-preview-1176112166 467 8/28/2021
1.0.0-preview-1172193368 496 8/26/2021
1.0.0-preview-1168287221 483 8/25/2021
1.0.0-preview-1147185155 566 8/19/2021
1.0.0-preview-1133286135 604 8/15/2021
1.0.0-preview-1118120224 584 8/10/2021
1.0.0-preview-1111420036 497 8/9/2021
1.0.0-preview-1111385512 429 8/9/2021
1.0.0-preview-1111166736 495 8/9/2021
1.0.0-preview-1088380884 518 8/1/2021
1.0.0-preview-1088311063 524 8/1/2021
1.0.0-preview-1088021240 596 8/1/2021
1.0.0-preview-1083990424 547 7/31/2021
1.0.0-preview-1080710191 512 7/30/2021
1.0.0-preview-1080701269 540 7/30/2021
1.0.0-preview-1079028054 544 7/29/2021
1.0.0-preview-1079000079 540 7/29/2021
1.0.0-preview-1078977564 599 7/29/2021
1.0.0-preview-1069218438 454 7/26/2021
1.0.0-preview-1065692127 599 7/26/2021
1.0.0-preview-1054554829 500 7/22/2021
1.0.0-preview-1054460177 560 7/22/2021
1.0.0-preview-1044919966 521 7/19/2021
1.0.0-preview-1043697034 454 7/19/2021
1.0.0-preview-1001211231 547 7/5/2021
1.0.0-preview-1001204475 517 7/5/2021
0.9.5-preview-243240046 754 9/7/2020
0.9.5-preview-243219862 778 9/7/2020