DiffSharp.Backends.Torch 1.0.7-preview1838897476

This is a prerelease version of DiffSharp.Backends.Torch.
There is a newer version of this package available.
See the version list below for details.
dotnet add package DiffSharp.Backends.Torch --version 1.0.7-preview1838897476
                    
NuGet\Install-Package DiffSharp.Backends.Torch -Version 1.0.7-preview1838897476
                    
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="DiffSharp.Backends.Torch" Version="1.0.7-preview1838897476" />
                    
For projects that support PackageReference, copy this XML node into the project file to reference the package.
<PackageVersion Include="DiffSharp.Backends.Torch" Version="1.0.7-preview1838897476" />
                    
Directory.Packages.props
<PackageReference Include="DiffSharp.Backends.Torch" />
                    
Project file
For projects that support Central Package Management (CPM), copy this XML node into the solution Directory.Packages.props file to version the package.
paket add DiffSharp.Backends.Torch --version 1.0.7-preview1838897476
                    
#r "nuget: DiffSharp.Backends.Torch, 1.0.7-preview1838897476"
                    
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
#:package DiffSharp.Backends.Torch@1.0.7-preview1838897476
                    
#:package directive can be used in C# file-based apps starting in .NET 10 preview 4. Copy this into a .cs file before any lines of code to reference the package.
#addin nuget:?package=DiffSharp.Backends.Torch&version=1.0.7-preview1838897476&prerelease
                    
Install as a Cake Addin
#tool nuget:?package=DiffSharp.Backends.Torch&version=1.0.7-preview1838897476&prerelease
                    
Install as a Cake Tool

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

Product Compatible and additional computed target framework versions.
.NET net5.0 is compatible.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed.  net10.0 was computed.  net10.0-android was computed.  net10.0-browser was computed.  net10.0-ios was computed.  net10.0-maccatalyst was computed.  net10.0-macos was computed.  net10.0-tvos was computed.  net10.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (5)

Showing the top 5 NuGet packages that depend on DiffSharp.Backends.Torch:

Package Downloads
DiffSharp-cuda-windows

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cuda-linux

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cpu

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-lite

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

FAkka.Mathnet.Symbolic.withTensorSupported

Package Description

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last Updated
1.0.7 6,497 3/26/2022
1.0.7-preview2044360861 601 3/26/2022
1.0.7-preview1873603133 659 2/21/2022
1.0.7-preview1872895008 648 2/20/2022
1.0.7-preview1872194677 654 2/20/2022
1.0.7-preview1867437105 633 2/19/2022
1.0.7-preview1838897476 633 2/14/2022
1.0.7-preview1838869913 634 2/14/2022
1.0.6 6,868 2/9/2022
1.0.6-preview1838805210 632 2/14/2022
1.0.6-preview1838790927 709 2/14/2022
1.0.6-preview1838781533 632 2/14/2022
1.0.6-preview1838761310 662 2/14/2022
1.0.6-preview1838574327 720 2/14/2022
1.0.6-preview1838238393 657 2/13/2022
1.0.6-preview1837967313 693 2/13/2022
1.0.6-preview1837932839 463 2/13/2022
1.0.6-preview1837857091 463 2/13/2022
1.0.5 3,806 2/9/2022
1.0.4 3,972 2/8/2022
1.0.3 5,068 2/8/2022
1.0.2 4,186 2/8/2022
1.0.1 5,034 11/8/2021
1.0.0-preview-987646120 801 6/30/2021
1.0.0-preview-964642900 770 6/23/2021
1.0.0-preview-964597118 596 6/23/2021
1.0.0-preview-964532207 662 6/23/2021
1.0.0-preview-964414624 669 6/23/2021
1.0.0-preview-962665709 519 6/23/2021
1.0.0-preview-961120541 564 6/22/2021
1.0.0-preview-958984202 602 6/22/2021
1.0.0-preview-783523654 747 4/25/2021
1.0.0-preview-783503343 653 4/25/2021
1.0.0-preview-783410550 685 4/25/2021
1.0.0-preview-781810429 632 4/25/2021
1.0.0-preview-775752139 722 4/22/2021
1.0.0-preview-774228953 686 4/22/2021
1.0.0-preview-769092916 669 4/21/2021
1.0.0-preview-768013090 651 4/20/2021
1.0.0-preview-762002995 637 4/19/2021
1.0.0-preview-761040762 701 4/18/2021
1.0.0-preview-761018834 708 4/18/2021
1.0.0-preview-756065403 604 4/16/2021
1.0.0-preview-755638011 632 4/16/2021
1.0.0-preview-752421465 669 4/15/2021
1.0.0-preview-748176085 664 4/14/2021
1.0.0-preview-746203897 638 4/13/2021
1.0.0-preview-746138300 665 4/13/2021
1.0.0-preview-745205599 621 4/13/2021
1.0.0-preview-739671157 648 4/12/2021
1.0.0-preview-712483117 651 4/2/2021
1.0.0-preview-699281085 597 3/29/2021
1.0.0-preview-699125312 654 3/29/2021
1.0.0-preview-698458610 701 3/29/2021
1.0.0-preview-697743517 714 3/29/2021
1.0.0-preview-697665469 652 3/29/2021
1.0.0-preview-690194555 654 3/26/2021
1.0.0-preview-688124591 636 3/25/2021
1.0.0-preview-687886352 630 3/25/2021
1.0.0-preview-681551353 654 3/24/2021
1.0.0-preview-681104545 685 3/23/2021
1.0.0-preview-680643606 725 3/23/2021
1.0.0-preview-679950457 648 3/23/2021
1.0.0-preview-669022451 662 3/19/2021
1.0.0-preview-643151273 559 3/11/2021
1.0.0-preview-633398743 625 3/8/2021
1.0.0-preview-633348953 656 3/8/2021
1.0.0-preview-621803110 696 3/4/2021
1.0.0-preview-611561611 692 3/1/2021
1.0.0-preview-611172961 601 3/1/2021
1.0.0-preview-593196134 572 2/23/2021
1.0.0-preview-589424126 617 2/22/2021
1.0.0-preview-589402583 648 2/22/2021
1.0.0-preview-586837684 603 2/21/2021
1.0.0-preview-586440747 657 2/21/2021
1.0.0-preview-498549439 656 1/20/2021
1.0.0-preview-485581354 693 1/14/2021
1.0.0-preview-392545720 761 11/30/2020
1.0.0-preview-392233243 706 11/30/2020
1.0.0-preview-392187079 776 11/30/2020
1.0.0-preview-390203270 700 11/29/2020
1.0.0-preview-387146713 792 11/27/2020
1.0.0-preview-386097798 828 11/26/2020
1.0.0-preview-385867359 834 11/26/2020
1.0.0-preview-385523380 711 11/26/2020
1.0.0-preview-384128234 823 11/25/2020
1.0.0-preview-374537774 782 11/20/2020
1.0.0-preview-374468367 675 11/20/2020
1.0.0-preview-368681212 739 11/17/2020
1.0.0-preview-368659044 828 11/17/2020
1.0.0-preview-364746088 860 11/15/2020
1.0.0-preview-364706087 793 11/15/2020
1.0.0-preview-363372268 712 11/14/2020
1.0.0-preview-362038354 756 11/13/2020
1.0.0-preview-362004577 749 11/13/2020
1.0.0-preview-361488593 699 11/13/2020
1.0.0-preview-360710530 743 11/13/2020
1.0.0-preview-359756455 732 11/12/2020
1.0.0-preview-358333968 789 11/11/2020
1.0.0-preview-358184921 790 11/11/2020
1.0.0-preview-358174946 755 11/11/2020
1.0.0-preview-349704450 849 11/6/2020
1.0.0-preview-349564717 828 11/6/2020
1.0.0-preview-343634015 842 11/3/2020
1.0.0-preview-343610434 752 11/3/2020
1.0.0-preview-328097867 1,049 10/26/2020
1.0.0-preview-322875134 791 10/22/2020
1.0.0-preview-315311536 736 10/19/2020
1.0.0-preview-309180753 775 10/15/2020
1.0.0-preview-309013019 812 10/15/2020
1.0.0-preview-308920132 721 10/15/2020
1.0.0-preview-308837132 784 10/15/2020
1.0.0-preview-308751690 749 10/15/2020
1.0.0-preview-308593840 765 10/15/2020
1.0.0-preview-299173506 850 10/10/2020
1.0.0-preview-292259854 855 10/6/2020
1.0.0-preview-291985511 802 10/6/2020
1.0.0-preview-291903007 776 10/6/2020
1.0.0-preview-291722399 805 10/6/2020
1.0.0-preview-284981464 751 10/2/2020
1.0.0-preview-284595614 737 10/2/2020
1.0.0-preview-280886714 808 9/30/2020
1.0.0-preview-278989673 751 9/29/2020
1.0.0-preview-277686264 749 9/29/2020
1.0.0-preview-277653295 756 9/29/2020
1.0.0-preview-275730148 821 9/28/2020
1.0.0-preview-275727262 790 9/28/2020
1.0.0-preview-267667710 839 9/22/2020
1.0.0-preview-263264614 848 9/20/2020
1.0.0-preview-263250971 868 9/20/2020
1.0.0-preview-262623253 740 9/19/2020
1.0.0-preview-258339834 781 9/16/2020
1.0.0-preview-258210544 808 9/16/2020
1.0.0-preview-258177528 850 9/16/2020
1.0.0-preview-258119380 852 9/16/2020
1.0.0-preview-256594931 803 9/16/2020
1.0.0-preview-256435175 876 9/15/2020
1.0.0-preview-253816091 772 9/14/2020
1.0.0-preview-253197654 795 9/14/2020
1.0.0-preview-247523274 737 9/10/2020
1.0.0-preview-247118168 818 9/9/2020
1.0.0-preview-246444372 863 9/9/2020
1.0.0-preview-246434361 823 9/9/2020
1.0.0-preview-246402060 745 9/9/2020
1.0.0-preview-245105781 759 9/8/2020
1.0.0-preview-244918410 827 9/8/2020
1.0.0-preview-243478925 743 9/7/2020
1.0.0-preview-243471084 784 9/7/2020
1.0.0-preview-243323135 883 9/7/2020
1.0.0-preview-1413494063 688 11/2/2021
1.0.0-preview-1405354284 626 10/31/2021
1.0.0-preview-1338129467 680 10/13/2021
1.0.0-preview-1327345305 771 10/11/2021
1.0.0-preview-1325686991 615 10/10/2021
1.0.0-preview-1324682939 761 10/10/2021
1.0.0-preview-1239345497 692 9/15/2021
1.0.0-preview-1227879651 671 9/13/2021
1.0.0-preview-1227810778 675 9/13/2021
1.0.0-preview-1222163389 664 9/10/2021
1.0.0-preview-1177844564 708 8/28/2021
1.0.0-preview-1176119659 614 8/28/2021
1.0.0-preview-1176116073 624 8/28/2021
1.0.0-preview-1176112166 592 8/28/2021
1.0.0-preview-1172193368 611 8/26/2021
1.0.0-preview-1168287221 600 8/25/2021
1.0.0-preview-1147185155 691 8/19/2021
1.0.0-preview-1133286135 733 8/15/2021
1.0.0-preview-1118120224 703 8/10/2021
1.0.0-preview-1111420036 616 8/9/2021
1.0.0-preview-1111385512 550 8/9/2021
1.0.0-preview-1111166736 609 8/9/2021
1.0.0-preview-1088380884 640 8/1/2021
1.0.0-preview-1088311063 645 8/1/2021
1.0.0-preview-1088021240 719 8/1/2021
1.0.0-preview-1083990424 660 7/31/2021
1.0.0-preview-1080710191 641 7/30/2021
1.0.0-preview-1080701269 668 7/30/2021
1.0.0-preview-1079028054 672 7/29/2021
1.0.0-preview-1079000079 669 7/29/2021
1.0.0-preview-1078977564 746 7/29/2021
1.0.0-preview-1069218438 581 7/26/2021
1.0.0-preview-1065692127 708 7/26/2021
1.0.0-preview-1054554829 623 7/22/2021
1.0.0-preview-1054460177 680 7/22/2021
1.0.0-preview-1044919966 666 7/19/2021
1.0.0-preview-1043697034 563 7/19/2021
1.0.0-preview-1001211231 662 7/5/2021
1.0.0-preview-1001204475 655 7/5/2021
0.9.5-preview-243240046 871 9/7/2020
0.9.5-preview-243219862 927 9/7/2020