DiffSharp.Backends.Torch 1.0.7-preview1838897476

This is a prerelease version of DiffSharp.Backends.Torch.
There is a newer version of this package available.
See the version list below for details.
dotnet add package DiffSharp.Backends.Torch --version 1.0.7-preview1838897476
                    
NuGet\Install-Package DiffSharp.Backends.Torch -Version 1.0.7-preview1838897476
                    
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="DiffSharp.Backends.Torch" Version="1.0.7-preview1838897476" />
                    
For projects that support PackageReference, copy this XML node into the project file to reference the package.
<PackageVersion Include="DiffSharp.Backends.Torch" Version="1.0.7-preview1838897476" />
                    
Directory.Packages.props
<PackageReference Include="DiffSharp.Backends.Torch" />
                    
Project file
For projects that support Central Package Management (CPM), copy this XML node into the solution Directory.Packages.props file to version the package.
paket add DiffSharp.Backends.Torch --version 1.0.7-preview1838897476
                    
#r "nuget: DiffSharp.Backends.Torch, 1.0.7-preview1838897476"
                    
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
#:package DiffSharp.Backends.Torch@1.0.7-preview1838897476
                    
#:package directive can be used in C# file-based apps starting in .NET 10 preview 4. Copy this into a .cs file before any lines of code to reference the package.
#addin nuget:?package=DiffSharp.Backends.Torch&version=1.0.7-preview1838897476&prerelease
                    
Install as a Cake Addin
#tool nuget:?package=DiffSharp.Backends.Torch&version=1.0.7-preview1838897476&prerelease
                    
Install as a Cake Tool

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

Product Compatible and additional computed target framework versions.
.NET net5.0 is compatible.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed.  net10.0 was computed.  net10.0-android was computed.  net10.0-browser was computed.  net10.0-ios was computed.  net10.0-maccatalyst was computed.  net10.0-macos was computed.  net10.0-tvos was computed.  net10.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (5)

Showing the top 5 NuGet packages that depend on DiffSharp.Backends.Torch:

Package Downloads
DiffSharp-cuda-windows

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cuda-linux

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cpu

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-lite

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

FAkka.Mathnet.Symbolic.withTensorSupported

Package Description

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last Updated
1.0.7 6,162 3/26/2022
1.0.7-preview2044360861 478 3/26/2022
1.0.7-preview1873603133 526 2/21/2022
1.0.7-preview1872895008 516 2/20/2022
1.0.7-preview1872194677 500 2/20/2022
1.0.7-preview1867437105 480 2/19/2022
1.0.7-preview1838897476 520 2/14/2022
1.0.7-preview1838869913 494 2/14/2022
1.0.6 6,742 2/9/2022
1.0.6-preview1838805210 504 2/14/2022
1.0.6-preview1838790927 579 2/14/2022
1.0.6-preview1838781533 528 2/14/2022
1.0.6-preview1838761310 488 2/14/2022
1.0.6-preview1838574327 570 2/14/2022
1.0.6-preview1838238393 523 2/13/2022
1.0.6-preview1837967313 551 2/13/2022
1.0.6-preview1837932839 371 2/13/2022
1.0.6-preview1837857091 366 2/13/2022
1.0.5 3,707 2/9/2022
1.0.4 3,855 2/8/2022
1.0.3 4,960 2/8/2022
1.0.2 4,082 2/8/2022
1.0.1 4,924 11/8/2021
1.0.0-preview-987646120 682 6/30/2021
1.0.0-preview-964642900 642 6/23/2021
1.0.0-preview-964597118 499 6/23/2021
1.0.0-preview-964532207 561 6/23/2021
1.0.0-preview-964414624 567 6/23/2021
1.0.0-preview-962665709 427 6/23/2021
1.0.0-preview-961120541 477 6/22/2021
1.0.0-preview-958984202 505 6/22/2021
1.0.0-preview-783523654 646 4/25/2021
1.0.0-preview-783503343 546 4/25/2021
1.0.0-preview-783410550 579 4/25/2021
1.0.0-preview-781810429 519 4/25/2021
1.0.0-preview-775752139 605 4/22/2021
1.0.0-preview-774228953 562 4/22/2021
1.0.0-preview-769092916 573 4/21/2021
1.0.0-preview-768013090 544 4/20/2021
1.0.0-preview-762002995 526 4/19/2021
1.0.0-preview-761040762 582 4/18/2021
1.0.0-preview-761018834 611 4/18/2021
1.0.0-preview-756065403 522 4/16/2021
1.0.0-preview-755638011 523 4/16/2021
1.0.0-preview-752421465 554 4/15/2021
1.0.0-preview-748176085 538 4/14/2021
1.0.0-preview-746203897 524 4/13/2021
1.0.0-preview-746138300 555 4/13/2021
1.0.0-preview-745205599 502 4/13/2021
1.0.0-preview-739671157 531 4/12/2021
1.0.0-preview-712483117 542 4/2/2021
1.0.0-preview-699281085 479 3/29/2021
1.0.0-preview-699125312 535 3/29/2021
1.0.0-preview-698458610 582 3/29/2021
1.0.0-preview-697743517 603 3/29/2021
1.0.0-preview-697665469 541 3/29/2021
1.0.0-preview-690194555 547 3/26/2021
1.0.0-preview-688124591 513 3/25/2021
1.0.0-preview-687886352 512 3/25/2021
1.0.0-preview-681551353 553 3/24/2021
1.0.0-preview-681104545 560 3/23/2021
1.0.0-preview-680643606 591 3/23/2021
1.0.0-preview-679950457 537 3/23/2021
1.0.0-preview-669022451 547 3/19/2021
1.0.0-preview-643151273 445 3/11/2021
1.0.0-preview-633398743 526 3/8/2021
1.0.0-preview-633348953 528 3/8/2021
1.0.0-preview-621803110 590 3/4/2021
1.0.0-preview-611561611 575 3/1/2021
1.0.0-preview-611172961 493 3/1/2021
1.0.0-preview-593196134 467 2/23/2021
1.0.0-preview-589424126 521 2/22/2021
1.0.0-preview-589402583 549 2/22/2021
1.0.0-preview-586837684 496 2/21/2021
1.0.0-preview-586440747 543 2/21/2021
1.0.0-preview-498549439 566 1/20/2021
1.0.0-preview-485581354 588 1/14/2021
1.0.0-preview-392545720 648 11/30/2020
1.0.0-preview-392233243 611 11/30/2020
1.0.0-preview-392187079 649 11/30/2020
1.0.0-preview-390203270 587 11/29/2020
1.0.0-preview-387146713 670 11/27/2020
1.0.0-preview-386097798 710 11/26/2020
1.0.0-preview-385867359 711 11/26/2020
1.0.0-preview-385523380 592 11/26/2020
1.0.0-preview-384128234 690 11/25/2020
1.0.0-preview-374537774 659 11/20/2020
1.0.0-preview-374468367 583 11/20/2020
1.0.0-preview-368681212 629 11/17/2020
1.0.0-preview-368659044 707 11/17/2020
1.0.0-preview-364746088 725 11/15/2020
1.0.0-preview-364706087 672 11/15/2020
1.0.0-preview-363372268 602 11/14/2020
1.0.0-preview-362038354 626 11/13/2020
1.0.0-preview-362004577 639 11/13/2020
1.0.0-preview-361488593 574 11/13/2020
1.0.0-preview-360710530 629 11/13/2020
1.0.0-preview-359756455 634 11/12/2020
1.0.0-preview-358333968 659 11/11/2020
1.0.0-preview-358184921 668 11/11/2020
1.0.0-preview-358174946 642 11/11/2020
1.0.0-preview-349704450 735 11/6/2020
1.0.0-preview-349564717 715 11/6/2020
1.0.0-preview-343634015 715 11/3/2020
1.0.0-preview-343610434 645 11/3/2020
1.0.0-preview-328097867 929 10/26/2020
1.0.0-preview-322875134 671 10/22/2020
1.0.0-preview-315311536 614 10/19/2020
1.0.0-preview-309180753 650 10/15/2020
1.0.0-preview-309013019 709 10/15/2020
1.0.0-preview-308920132 629 10/15/2020
1.0.0-preview-308837132 659 10/15/2020
1.0.0-preview-308751690 664 10/15/2020
1.0.0-preview-308593840 671 10/15/2020
1.0.0-preview-299173506 744 10/10/2020
1.0.0-preview-292259854 742 10/6/2020
1.0.0-preview-291985511 696 10/6/2020
1.0.0-preview-291903007 645 10/6/2020
1.0.0-preview-291722399 718 10/6/2020
1.0.0-preview-284981464 657 10/2/2020
1.0.0-preview-284595614 630 10/2/2020
1.0.0-preview-280886714 708 9/30/2020
1.0.0-preview-278989673 655 9/29/2020
1.0.0-preview-277686264 640 9/29/2020
1.0.0-preview-277653295 662 9/29/2020
1.0.0-preview-275730148 721 9/28/2020
1.0.0-preview-275727262 687 9/28/2020
1.0.0-preview-267667710 718 9/22/2020
1.0.0-preview-263264614 749 9/20/2020
1.0.0-preview-263250971 782 9/20/2020
1.0.0-preview-262623253 636 9/19/2020
1.0.0-preview-258339834 664 9/16/2020
1.0.0-preview-258210544 705 9/16/2020
1.0.0-preview-258177528 753 9/16/2020
1.0.0-preview-258119380 745 9/16/2020
1.0.0-preview-256594931 705 9/16/2020
1.0.0-preview-256435175 752 9/15/2020
1.0.0-preview-253816091 656 9/14/2020
1.0.0-preview-253197654 677 9/14/2020
1.0.0-preview-247523274 632 9/10/2020
1.0.0-preview-247118168 701 9/9/2020
1.0.0-preview-246444372 761 9/9/2020
1.0.0-preview-246434361 737 9/9/2020
1.0.0-preview-246402060 609 9/9/2020
1.0.0-preview-245105781 642 9/8/2020
1.0.0-preview-244918410 697 9/8/2020
1.0.0-preview-243478925 635 9/7/2020
1.0.0-preview-243471084 657 9/7/2020
1.0.0-preview-243323135 764 9/7/2020
1.0.0-preview-1413494063 574 11/2/2021
1.0.0-preview-1405354284 527 10/31/2021
1.0.0-preview-1338129467 572 10/13/2021
1.0.0-preview-1327345305 663 10/11/2021
1.0.0-preview-1325686991 513 10/10/2021
1.0.0-preview-1324682939 669 10/10/2021
1.0.0-preview-1239345497 581 9/15/2021
1.0.0-preview-1227879651 576 9/13/2021
1.0.0-preview-1227810778 579 9/13/2021
1.0.0-preview-1222163389 562 9/10/2021
1.0.0-preview-1177844564 591 8/28/2021
1.0.0-preview-1176119659 497 8/28/2021
1.0.0-preview-1176116073 517 8/28/2021
1.0.0-preview-1176112166 483 8/28/2021
1.0.0-preview-1172193368 513 8/26/2021
1.0.0-preview-1168287221 496 8/25/2021
1.0.0-preview-1147185155 580 8/19/2021
1.0.0-preview-1133286135 620 8/15/2021
1.0.0-preview-1118120224 600 8/10/2021
1.0.0-preview-1111420036 513 8/9/2021
1.0.0-preview-1111385512 441 8/9/2021
1.0.0-preview-1111166736 508 8/9/2021
1.0.0-preview-1088380884 537 8/1/2021
1.0.0-preview-1088311063 540 8/1/2021
1.0.0-preview-1088021240 615 8/1/2021
1.0.0-preview-1083990424 562 7/31/2021
1.0.0-preview-1080710191 528 7/30/2021
1.0.0-preview-1080701269 553 7/30/2021
1.0.0-preview-1079028054 558 7/29/2021
1.0.0-preview-1079000079 556 7/29/2021
1.0.0-preview-1078977564 612 7/29/2021
1.0.0-preview-1069218438 468 7/26/2021
1.0.0-preview-1065692127 613 7/26/2021
1.0.0-preview-1054554829 513 7/22/2021
1.0.0-preview-1054460177 577 7/22/2021
1.0.0-preview-1044919966 535 7/19/2021
1.0.0-preview-1043697034 469 7/19/2021
1.0.0-preview-1001211231 562 7/5/2021
1.0.0-preview-1001204475 531 7/5/2021
0.9.5-preview-243240046 770 9/7/2020
0.9.5-preview-243219862 794 9/7/2020