DiffSharp.Backends.Torch 1.0.0-preview-964532207

This is a prerelease version of DiffSharp.Backends.Torch.
There is a newer version of this package available.
See the version list below for details.
dotnet add package DiffSharp.Backends.Torch --version 1.0.0-preview-964532207
                    
NuGet\Install-Package DiffSharp.Backends.Torch -Version 1.0.0-preview-964532207
                    
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-964532207" />
                    
For projects that support PackageReference, copy this XML node into the project file to reference the package.
<PackageVersion Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-964532207" />
                    
Directory.Packages.props
<PackageReference Include="DiffSharp.Backends.Torch" />
                    
Project file
For projects that support Central Package Management (CPM), copy this XML node into the solution Directory.Packages.props file to version the package.
paket add DiffSharp.Backends.Torch --version 1.0.0-preview-964532207
                    
#r "nuget: DiffSharp.Backends.Torch, 1.0.0-preview-964532207"
                    
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
#:package DiffSharp.Backends.Torch@1.0.0-preview-964532207
                    
#:package directive can be used in C# file-based apps starting in .NET 10 preview 4. Copy this into a .cs file before any lines of code to reference the package.
#addin nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-964532207&prerelease
                    
Install as a Cake Addin
#tool nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-964532207&prerelease
                    
Install as a Cake Tool

Package Description

Product Compatible and additional computed target framework versions.
.NET net5.0 is compatible.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed.  net10.0 was computed.  net10.0-android was computed.  net10.0-browser was computed.  net10.0-ios was computed.  net10.0-maccatalyst was computed.  net10.0-macos was computed.  net10.0-tvos was computed.  net10.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (5)

Showing the top 5 NuGet packages that depend on DiffSharp.Backends.Torch:

Package Downloads
DiffSharp-cuda-windows

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cuda-linux

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cpu

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-lite

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

FAkka.Mathnet.Symbolic.withTensorSupported

Package Description

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last Updated
1.0.7 6,397 3/26/2022
1.0.7-preview2044360861 572 3/26/2022
1.0.7-preview1873603133 639 2/21/2022
1.0.7-preview1872895008 606 2/20/2022
1.0.7-preview1872194677 607 2/20/2022
1.0.7-preview1867437105 583 2/19/2022
1.0.7-preview1838897476 605 2/14/2022
1.0.7-preview1838869913 596 2/14/2022
1.0.6 6,820 2/9/2022
1.0.6-preview1838805210 595 2/14/2022
1.0.6-preview1838790927 675 2/14/2022
1.0.6-preview1838781533 583 2/14/2022
1.0.6-preview1838761310 614 2/14/2022
1.0.6-preview1838574327 660 2/14/2022
1.0.6-preview1838238393 618 2/13/2022
1.0.6-preview1837967313 643 2/13/2022
1.0.6-preview1837932839 435 2/13/2022
1.0.6-preview1837857091 433 2/13/2022
1.0.5 3,772 2/9/2022
1.0.4 3,930 2/8/2022
1.0.3 5,031 2/8/2022
1.0.2 4,152 2/8/2022
1.0.1 4,994 11/8/2021
1.0.0-preview-987646120 761 6/30/2021
1.0.0-preview-964642900 729 6/23/2021
1.0.0-preview-964597118 564 6/23/2021
1.0.0-preview-964532207 625 6/23/2021
1.0.0-preview-964414624 640 6/23/2021
1.0.0-preview-962665709 486 6/23/2021
1.0.0-preview-961120541 536 6/22/2021
1.0.0-preview-958984202 572 6/22/2021
1.0.0-preview-783523654 709 4/25/2021
1.0.0-preview-783503343 607 4/25/2021
1.0.0-preview-783410550 648 4/25/2021
1.0.0-preview-781810429 591 4/25/2021
1.0.0-preview-775752139 683 4/22/2021
1.0.0-preview-774228953 645 4/22/2021
1.0.0-preview-769092916 632 4/21/2021
1.0.0-preview-768013090 610 4/20/2021
1.0.0-preview-762002995 608 4/19/2021
1.0.0-preview-761040762 661 4/18/2021
1.0.0-preview-761018834 670 4/18/2021
1.0.0-preview-756065403 572 4/16/2021
1.0.0-preview-755638011 593 4/16/2021
1.0.0-preview-752421465 622 4/15/2021
1.0.0-preview-748176085 621 4/14/2021
1.0.0-preview-746203897 595 4/13/2021
1.0.0-preview-746138300 623 4/13/2021
1.0.0-preview-745205599 588 4/13/2021
1.0.0-preview-739671157 612 4/12/2021
1.0.0-preview-712483117 614 4/2/2021
1.0.0-preview-699281085 559 3/29/2021
1.0.0-preview-699125312 610 3/29/2021
1.0.0-preview-698458610 658 3/29/2021
1.0.0-preview-697743517 686 3/29/2021
1.0.0-preview-697665469 612 3/29/2021
1.0.0-preview-690194555 620 3/26/2021
1.0.0-preview-688124591 596 3/25/2021
1.0.0-preview-687886352 595 3/25/2021
1.0.0-preview-681551353 616 3/24/2021
1.0.0-preview-681104545 645 3/23/2021
1.0.0-preview-680643606 684 3/23/2021
1.0.0-preview-679950457 618 3/23/2021
1.0.0-preview-669022451 622 3/19/2021
1.0.0-preview-643151273 517 3/11/2021
1.0.0-preview-633398743 594 3/8/2021
1.0.0-preview-633348953 614 3/8/2021
1.0.0-preview-621803110 662 3/4/2021
1.0.0-preview-611561611 652 3/1/2021
1.0.0-preview-611172961 563 3/1/2021
1.0.0-preview-593196134 539 2/23/2021
1.0.0-preview-589424126 594 2/22/2021
1.0.0-preview-589402583 621 2/22/2021
1.0.0-preview-586837684 577 2/21/2021
1.0.0-preview-586440747 622 2/21/2021
1.0.0-preview-498549439 619 1/20/2021
1.0.0-preview-485581354 661 1/14/2021
1.0.0-preview-392545720 717 11/30/2020
1.0.0-preview-392233243 678 11/30/2020
1.0.0-preview-392187079 738 11/30/2020
1.0.0-preview-390203270 655 11/29/2020
1.0.0-preview-387146713 753 11/27/2020
1.0.0-preview-386097798 789 11/26/2020
1.0.0-preview-385867359 796 11/26/2020
1.0.0-preview-385523380 679 11/26/2020
1.0.0-preview-384128234 781 11/25/2020
1.0.0-preview-374537774 743 11/20/2020
1.0.0-preview-374468367 651 11/20/2020
1.0.0-preview-368681212 691 11/17/2020
1.0.0-preview-368659044 788 11/17/2020
1.0.0-preview-364746088 812 11/15/2020
1.0.0-preview-364706087 749 11/15/2020
1.0.0-preview-363372268 667 11/14/2020
1.0.0-preview-362038354 710 11/13/2020
1.0.0-preview-362004577 715 11/13/2020
1.0.0-preview-361488593 660 11/13/2020
1.0.0-preview-360710530 702 11/13/2020
1.0.0-preview-359756455 705 11/12/2020
1.0.0-preview-358333968 745 11/11/2020
1.0.0-preview-358184921 748 11/11/2020
1.0.0-preview-358174946 714 11/11/2020
1.0.0-preview-349704450 802 11/6/2020
1.0.0-preview-349564717 784 11/6/2020
1.0.0-preview-343634015 797 11/3/2020
1.0.0-preview-343610434 708 11/3/2020
1.0.0-preview-328097867 1,007 10/26/2020
1.0.0-preview-322875134 758 10/22/2020
1.0.0-preview-315311536 690 10/19/2020
1.0.0-preview-309180753 735 10/15/2020
1.0.0-preview-309013019 765 10/15/2020
1.0.0-preview-308920132 682 10/15/2020
1.0.0-preview-308837132 745 10/15/2020
1.0.0-preview-308751690 719 10/15/2020
1.0.0-preview-308593840 721 10/15/2020
1.0.0-preview-299173506 804 10/10/2020
1.0.0-preview-292259854 812 10/6/2020
1.0.0-preview-291985511 758 10/6/2020
1.0.0-preview-291903007 739 10/6/2020
1.0.0-preview-291722399 774 10/6/2020
1.0.0-preview-284981464 722 10/2/2020
1.0.0-preview-284595614 693 10/2/2020
1.0.0-preview-280886714 770 9/30/2020
1.0.0-preview-278989673 715 9/29/2020
1.0.0-preview-277686264 715 9/29/2020
1.0.0-preview-277653295 719 9/29/2020
1.0.0-preview-275730148 788 9/28/2020
1.0.0-preview-275727262 757 9/28/2020
1.0.0-preview-267667710 791 9/22/2020
1.0.0-preview-263264614 811 9/20/2020
1.0.0-preview-263250971 832 9/20/2020
1.0.0-preview-262623253 703 9/19/2020
1.0.0-preview-258339834 731 9/16/2020
1.0.0-preview-258210544 776 9/16/2020
1.0.0-preview-258177528 821 9/16/2020
1.0.0-preview-258119380 808 9/16/2020
1.0.0-preview-256594931 771 9/16/2020
1.0.0-preview-256435175 837 9/15/2020
1.0.0-preview-253816091 731 9/14/2020
1.0.0-preview-253197654 758 9/14/2020
1.0.0-preview-247523274 695 9/10/2020
1.0.0-preview-247118168 784 9/9/2020
1.0.0-preview-246444372 827 9/9/2020
1.0.0-preview-246434361 786 9/9/2020
1.0.0-preview-246402060 701 9/9/2020
1.0.0-preview-245105781 719 9/8/2020
1.0.0-preview-244918410 787 9/8/2020
1.0.0-preview-243478925 717 9/7/2020
1.0.0-preview-243471084 738 9/7/2020
1.0.0-preview-243323135 836 9/7/2020
1.0.0-preview-1413494063 646 11/2/2021
1.0.0-preview-1405354284 588 10/31/2021
1.0.0-preview-1338129467 639 10/13/2021
1.0.0-preview-1327345305 733 10/11/2021
1.0.0-preview-1325686991 573 10/10/2021
1.0.0-preview-1324682939 728 10/10/2021
1.0.0-preview-1239345497 652 9/15/2021
1.0.0-preview-1227879651 643 9/13/2021
1.0.0-preview-1227810778 647 9/13/2021
1.0.0-preview-1222163389 633 9/10/2021
1.0.0-preview-1177844564 667 8/28/2021
1.0.0-preview-1176119659 575 8/28/2021
1.0.0-preview-1176116073 579 8/28/2021
1.0.0-preview-1176112166 559 8/28/2021
1.0.0-preview-1172193368 578 8/26/2021
1.0.0-preview-1168287221 561 8/25/2021
1.0.0-preview-1147185155 654 8/19/2021
1.0.0-preview-1133286135 694 8/15/2021
1.0.0-preview-1118120224 672 8/10/2021
1.0.0-preview-1111420036 579 8/9/2021
1.0.0-preview-1111385512 516 8/9/2021
1.0.0-preview-1111166736 569 8/9/2021
1.0.0-preview-1088380884 604 8/1/2021
1.0.0-preview-1088311063 609 8/1/2021
1.0.0-preview-1088021240 691 8/1/2021
1.0.0-preview-1083990424 622 7/31/2021
1.0.0-preview-1080710191 604 7/30/2021
1.0.0-preview-1080701269 630 7/30/2021
1.0.0-preview-1079028054 631 7/29/2021
1.0.0-preview-1079000079 643 7/29/2021
1.0.0-preview-1078977564 709 7/29/2021
1.0.0-preview-1069218438 534 7/26/2021
1.0.0-preview-1065692127 680 7/26/2021
1.0.0-preview-1054554829 590 7/22/2021
1.0.0-preview-1054460177 646 7/22/2021
1.0.0-preview-1044919966 623 7/19/2021
1.0.0-preview-1043697034 535 7/19/2021
1.0.0-preview-1001211231 629 7/5/2021
1.0.0-preview-1001204475 614 7/5/2021
0.9.5-preview-243240046 838 9/7/2020
0.9.5-preview-243219862 898 9/7/2020