DiffSharp.Backends.Torch 1.0.0-preview-962665709

This is a prerelease version of DiffSharp.Backends.Torch.
There is a newer version of this package available.
See the version list below for details.
dotnet add package DiffSharp.Backends.Torch --version 1.0.0-preview-962665709
                    
NuGet\Install-Package DiffSharp.Backends.Torch -Version 1.0.0-preview-962665709
                    
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-962665709" />
                    
For projects that support PackageReference, copy this XML node into the project file to reference the package.
<PackageVersion Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-962665709" />
                    
Directory.Packages.props
<PackageReference Include="DiffSharp.Backends.Torch" />
                    
Project file
For projects that support Central Package Management (CPM), copy this XML node into the solution Directory.Packages.props file to version the package.
paket add DiffSharp.Backends.Torch --version 1.0.0-preview-962665709
                    
#r "nuget: DiffSharp.Backends.Torch, 1.0.0-preview-962665709"
                    
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
#:package DiffSharp.Backends.Torch@1.0.0-preview-962665709
                    
#:package directive can be used in C# file-based apps starting in .NET 10 preview 4. Copy this into a .cs file before any lines of code to reference the package.
#addin nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-962665709&prerelease
                    
Install as a Cake Addin
#tool nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-962665709&prerelease
                    
Install as a Cake Tool

Package Description

Product Compatible and additional computed target framework versions.
.NET net5.0 is compatible.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed.  net10.0 was computed.  net10.0-android was computed.  net10.0-browser was computed.  net10.0-ios was computed.  net10.0-maccatalyst was computed.  net10.0-macos was computed.  net10.0-tvos was computed.  net10.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (5)

Showing the top 5 NuGet packages that depend on DiffSharp.Backends.Torch:

Package Downloads
DiffSharp-cuda-windows

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cuda-linux

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cpu

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-lite

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

FAkka.Mathnet.Symbolic.withTensorSupported

Package Description

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last Updated
1.0.7 6,229 3/26/2022
1.0.7-preview2044360861 490 3/26/2022
1.0.7-preview1873603133 541 2/21/2022
1.0.7-preview1872895008 534 2/20/2022
1.0.7-preview1872194677 517 2/20/2022
1.0.7-preview1867437105 498 2/19/2022
1.0.7-preview1838897476 533 2/14/2022
1.0.7-preview1838869913 516 2/14/2022
1.0.6 6,758 2/9/2022
1.0.6-preview1838805210 520 2/14/2022
1.0.6-preview1838790927 598 2/14/2022
1.0.6-preview1838781533 539 2/14/2022
1.0.6-preview1838761310 509 2/14/2022
1.0.6-preview1838574327 586 2/14/2022
1.0.6-preview1838238393 541 2/13/2022
1.0.6-preview1837967313 566 2/13/2022
1.0.6-preview1837932839 380 2/13/2022
1.0.6-preview1837857091 373 2/13/2022
1.0.5 3,714 2/9/2022
1.0.4 3,867 2/8/2022
1.0.3 4,977 2/8/2022
1.0.2 4,093 2/8/2022
1.0.1 4,940 11/8/2021
1.0.0-preview-987646120 691 6/30/2021
1.0.0-preview-964642900 655 6/23/2021
1.0.0-preview-964597118 508 6/23/2021
1.0.0-preview-964532207 570 6/23/2021
1.0.0-preview-964414624 575 6/23/2021
1.0.0-preview-962665709 438 6/23/2021
1.0.0-preview-961120541 487 6/22/2021
1.0.0-preview-958984202 513 6/22/2021
1.0.0-preview-783523654 655 4/25/2021
1.0.0-preview-783503343 561 4/25/2021
1.0.0-preview-783410550 595 4/25/2021
1.0.0-preview-781810429 538 4/25/2021
1.0.0-preview-775752139 622 4/22/2021
1.0.0-preview-774228953 578 4/22/2021
1.0.0-preview-769092916 583 4/21/2021
1.0.0-preview-768013090 557 4/20/2021
1.0.0-preview-762002995 542 4/19/2021
1.0.0-preview-761040762 601 4/18/2021
1.0.0-preview-761018834 620 4/18/2021
1.0.0-preview-756065403 529 4/16/2021
1.0.0-preview-755638011 537 4/16/2021
1.0.0-preview-752421465 570 4/15/2021
1.0.0-preview-748176085 556 4/14/2021
1.0.0-preview-746203897 533 4/13/2021
1.0.0-preview-746138300 562 4/13/2021
1.0.0-preview-745205599 521 4/13/2021
1.0.0-preview-739671157 551 4/12/2021
1.0.0-preview-712483117 559 4/2/2021
1.0.0-preview-699281085 500 3/29/2021
1.0.0-preview-699125312 551 3/29/2021
1.0.0-preview-698458610 602 3/29/2021
1.0.0-preview-697743517 619 3/29/2021
1.0.0-preview-697665469 560 3/29/2021
1.0.0-preview-690194555 561 3/26/2021
1.0.0-preview-688124591 528 3/25/2021
1.0.0-preview-687886352 526 3/25/2021
1.0.0-preview-681551353 564 3/24/2021
1.0.0-preview-681104545 578 3/23/2021
1.0.0-preview-680643606 605 3/23/2021
1.0.0-preview-679950457 555 3/23/2021
1.0.0-preview-669022451 559 3/19/2021
1.0.0-preview-643151273 462 3/11/2021
1.0.0-preview-633398743 535 3/8/2021
1.0.0-preview-633348953 544 3/8/2021
1.0.0-preview-621803110 601 3/4/2021
1.0.0-preview-611561611 594 3/1/2021
1.0.0-preview-611172961 510 3/1/2021
1.0.0-preview-593196134 480 2/23/2021
1.0.0-preview-589424126 534 2/22/2021
1.0.0-preview-589402583 562 2/22/2021
1.0.0-preview-586837684 511 2/21/2021
1.0.0-preview-586440747 558 2/21/2021
1.0.0-preview-498549439 585 1/20/2021
1.0.0-preview-485581354 598 1/14/2021
1.0.0-preview-392545720 662 11/30/2020
1.0.0-preview-392233243 629 11/30/2020
1.0.0-preview-392187079 670 11/30/2020
1.0.0-preview-390203270 596 11/29/2020
1.0.0-preview-387146713 687 11/27/2020
1.0.0-preview-386097798 726 11/26/2020
1.0.0-preview-385867359 728 11/26/2020
1.0.0-preview-385523380 606 11/26/2020
1.0.0-preview-384128234 708 11/25/2020
1.0.0-preview-374537774 684 11/20/2020
1.0.0-preview-374468367 602 11/20/2020
1.0.0-preview-368681212 644 11/17/2020
1.0.0-preview-368659044 725 11/17/2020
1.0.0-preview-364746088 745 11/15/2020
1.0.0-preview-364706087 690 11/15/2020
1.0.0-preview-363372268 618 11/14/2020
1.0.0-preview-362038354 645 11/13/2020
1.0.0-preview-362004577 659 11/13/2020
1.0.0-preview-361488593 593 11/13/2020
1.0.0-preview-360710530 643 11/13/2020
1.0.0-preview-359756455 648 11/12/2020
1.0.0-preview-358333968 677 11/11/2020
1.0.0-preview-358184921 683 11/11/2020
1.0.0-preview-358174946 658 11/11/2020
1.0.0-preview-349704450 750 11/6/2020
1.0.0-preview-349564717 724 11/6/2020
1.0.0-preview-343634015 731 11/3/2020
1.0.0-preview-343610434 657 11/3/2020
1.0.0-preview-328097867 941 10/26/2020
1.0.0-preview-322875134 692 10/22/2020
1.0.0-preview-315311536 633 10/19/2020
1.0.0-preview-309180753 667 10/15/2020
1.0.0-preview-309013019 728 10/15/2020
1.0.0-preview-308920132 646 10/15/2020
1.0.0-preview-308837132 679 10/15/2020
1.0.0-preview-308751690 684 10/15/2020
1.0.0-preview-308593840 692 10/15/2020
1.0.0-preview-299173506 751 10/10/2020
1.0.0-preview-292259854 759 10/6/2020
1.0.0-preview-291985511 713 10/6/2020
1.0.0-preview-291903007 667 10/6/2020
1.0.0-preview-291722399 738 10/6/2020
1.0.0-preview-284981464 671 10/2/2020
1.0.0-preview-284595614 646 10/2/2020
1.0.0-preview-280886714 724 9/30/2020
1.0.0-preview-278989673 675 9/29/2020
1.0.0-preview-277686264 659 9/29/2020
1.0.0-preview-277653295 678 9/29/2020
1.0.0-preview-275730148 737 9/28/2020
1.0.0-preview-275727262 693 9/28/2020
1.0.0-preview-267667710 735 9/22/2020
1.0.0-preview-263264614 756 9/20/2020
1.0.0-preview-263250971 788 9/20/2020
1.0.0-preview-262623253 645 9/19/2020
1.0.0-preview-258339834 682 9/16/2020
1.0.0-preview-258210544 719 9/16/2020
1.0.0-preview-258177528 768 9/16/2020
1.0.0-preview-258119380 761 9/16/2020
1.0.0-preview-256594931 724 9/16/2020
1.0.0-preview-256435175 772 9/15/2020
1.0.0-preview-253816091 664 9/14/2020
1.0.0-preview-253197654 693 9/14/2020
1.0.0-preview-247523274 647 9/10/2020
1.0.0-preview-247118168 717 9/9/2020
1.0.0-preview-246444372 779 9/9/2020
1.0.0-preview-246434361 744 9/9/2020
1.0.0-preview-246402060 630 9/9/2020
1.0.0-preview-245105781 661 9/8/2020
1.0.0-preview-244918410 714 9/8/2020
1.0.0-preview-243478925 650 9/7/2020
1.0.0-preview-243471084 676 9/7/2020
1.0.0-preview-243323135 787 9/7/2020
1.0.0-preview-1413494063 588 11/2/2021
1.0.0-preview-1405354284 547 10/31/2021
1.0.0-preview-1338129467 581 10/13/2021
1.0.0-preview-1327345305 677 10/11/2021
1.0.0-preview-1325686991 525 10/10/2021
1.0.0-preview-1324682939 685 10/10/2021
1.0.0-preview-1239345497 588 9/15/2021
1.0.0-preview-1227879651 590 9/13/2021
1.0.0-preview-1227810778 598 9/13/2021
1.0.0-preview-1222163389 574 9/10/2021
1.0.0-preview-1177844564 602 8/28/2021
1.0.0-preview-1176119659 506 8/28/2021
1.0.0-preview-1176116073 526 8/28/2021
1.0.0-preview-1176112166 496 8/28/2021
1.0.0-preview-1172193368 524 8/26/2021
1.0.0-preview-1168287221 513 8/25/2021
1.0.0-preview-1147185155 595 8/19/2021
1.0.0-preview-1133286135 628 8/15/2021
1.0.0-preview-1118120224 616 8/10/2021
1.0.0-preview-1111420036 532 8/9/2021
1.0.0-preview-1111385512 457 8/9/2021
1.0.0-preview-1111166736 518 8/9/2021
1.0.0-preview-1088380884 549 8/1/2021
1.0.0-preview-1088311063 555 8/1/2021
1.0.0-preview-1088021240 626 8/1/2021
1.0.0-preview-1083990424 578 7/31/2021
1.0.0-preview-1080710191 542 7/30/2021
1.0.0-preview-1080701269 570 7/30/2021
1.0.0-preview-1079028054 571 7/29/2021
1.0.0-preview-1079000079 574 7/29/2021
1.0.0-preview-1078977564 632 7/29/2021
1.0.0-preview-1069218438 481 7/26/2021
1.0.0-preview-1065692127 630 7/26/2021
1.0.0-preview-1054554829 534 7/22/2021
1.0.0-preview-1054460177 596 7/22/2021
1.0.0-preview-1044919966 550 7/19/2021
1.0.0-preview-1043697034 486 7/19/2021
1.0.0-preview-1001211231 579 7/5/2021
1.0.0-preview-1001204475 549 7/5/2021
0.9.5-preview-243240046 787 9/7/2020
0.9.5-preview-243219862 813 9/7/2020