DiffSharp.Backends.Torch 1.0.0-preview-669022451

This is a prerelease version of DiffSharp.Backends.Torch.
There is a newer version of this package available.
See the version list below for details.
dotnet add package DiffSharp.Backends.Torch --version 1.0.0-preview-669022451
                    
NuGet\Install-Package DiffSharp.Backends.Torch -Version 1.0.0-preview-669022451
                    
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-669022451" />
                    
For projects that support PackageReference, copy this XML node into the project file to reference the package.
<PackageVersion Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-669022451" />
                    
Directory.Packages.props
<PackageReference Include="DiffSharp.Backends.Torch" />
                    
Project file
For projects that support Central Package Management (CPM), copy this XML node into the solution Directory.Packages.props file to version the package.
paket add DiffSharp.Backends.Torch --version 1.0.0-preview-669022451
                    
#r "nuget: DiffSharp.Backends.Torch, 1.0.0-preview-669022451"
                    
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
#:package DiffSharp.Backends.Torch@1.0.0-preview-669022451
                    
#:package directive can be used in C# file-based apps starting in .NET 10 preview 4. Copy this into a .cs file before any lines of code to reference the package.
#addin nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-669022451&prerelease
                    
Install as a Cake Addin
#tool nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-669022451&prerelease
                    
Install as a Cake Tool

Package Description

Product Compatible and additional computed target framework versions.
.NET net5.0 is compatible.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed.  net10.0 was computed.  net10.0-android was computed.  net10.0-browser was computed.  net10.0-ios was computed.  net10.0-maccatalyst was computed.  net10.0-macos was computed.  net10.0-tvos was computed.  net10.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (5)

Showing the top 5 NuGet packages that depend on DiffSharp.Backends.Torch:

Package Downloads
DiffSharp-cuda-windows

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cuda-linux

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cpu

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-lite

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

FAkka.Mathnet.Symbolic.withTensorSupported

Package Description

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last Updated
1.0.7 6,119 3/26/2022
1.0.7-preview2044360861 472 3/26/2022
1.0.7-preview1873603133 516 2/21/2022
1.0.7-preview1872895008 505 2/20/2022
1.0.7-preview1872194677 493 2/20/2022
1.0.7-preview1867437105 469 2/19/2022
1.0.7-preview1838897476 513 2/14/2022
1.0.7-preview1838869913 485 2/14/2022
1.0.6 6,735 2/9/2022
1.0.6-preview1838805210 494 2/14/2022
1.0.6-preview1838790927 571 2/14/2022
1.0.6-preview1838781533 519 2/14/2022
1.0.6-preview1838761310 480 2/14/2022
1.0.6-preview1838574327 561 2/14/2022
1.0.6-preview1838238393 514 2/13/2022
1.0.6-preview1837967313 540 2/13/2022
1.0.6-preview1837932839 362 2/13/2022
1.0.6-preview1837857091 358 2/13/2022
1.0.5 3,700 2/9/2022
1.0.4 3,848 2/8/2022
1.0.3 4,952 2/8/2022
1.0.2 4,071 2/8/2022
1.0.1 4,916 11/8/2021
1.0.0-preview-987646120 672 6/30/2021
1.0.0-preview-964642900 630 6/23/2021
1.0.0-preview-964597118 491 6/23/2021
1.0.0-preview-964532207 552 6/23/2021
1.0.0-preview-964414624 560 6/23/2021
1.0.0-preview-962665709 417 6/23/2021
1.0.0-preview-961120541 462 6/22/2021
1.0.0-preview-958984202 495 6/22/2021
1.0.0-preview-783523654 637 4/25/2021
1.0.0-preview-783503343 536 4/25/2021
1.0.0-preview-783410550 565 4/25/2021
1.0.0-preview-781810429 512 4/25/2021
1.0.0-preview-775752139 597 4/22/2021
1.0.0-preview-774228953 551 4/22/2021
1.0.0-preview-769092916 565 4/21/2021
1.0.0-preview-768013090 537 4/20/2021
1.0.0-preview-762002995 512 4/19/2021
1.0.0-preview-761040762 572 4/18/2021
1.0.0-preview-761018834 601 4/18/2021
1.0.0-preview-756065403 513 4/16/2021
1.0.0-preview-755638011 513 4/16/2021
1.0.0-preview-752421465 544 4/15/2021
1.0.0-preview-748176085 529 4/14/2021
1.0.0-preview-746203897 516 4/13/2021
1.0.0-preview-746138300 549 4/13/2021
1.0.0-preview-745205599 492 4/13/2021
1.0.0-preview-739671157 524 4/12/2021
1.0.0-preview-712483117 534 4/2/2021
1.0.0-preview-699281085 472 3/29/2021
1.0.0-preview-699125312 527 3/29/2021
1.0.0-preview-698458610 574 3/29/2021
1.0.0-preview-697743517 595 3/29/2021
1.0.0-preview-697665469 531 3/29/2021
1.0.0-preview-690194555 537 3/26/2021
1.0.0-preview-688124591 504 3/25/2021
1.0.0-preview-687886352 506 3/25/2021
1.0.0-preview-681551353 545 3/24/2021
1.0.0-preview-681104545 551 3/23/2021
1.0.0-preview-680643606 579 3/23/2021
1.0.0-preview-679950457 531 3/23/2021
1.0.0-preview-669022451 538 3/19/2021
1.0.0-preview-643151273 438 3/11/2021
1.0.0-preview-633398743 516 3/8/2021
1.0.0-preview-633348953 517 3/8/2021
1.0.0-preview-621803110 581 3/4/2021
1.0.0-preview-611561611 565 3/1/2021
1.0.0-preview-611172961 486 3/1/2021
1.0.0-preview-593196134 461 2/23/2021
1.0.0-preview-589424126 514 2/22/2021
1.0.0-preview-589402583 543 2/22/2021
1.0.0-preview-586837684 487 2/21/2021
1.0.0-preview-586440747 536 2/21/2021
1.0.0-preview-498549439 560 1/20/2021
1.0.0-preview-485581354 577 1/14/2021
1.0.0-preview-392545720 640 11/30/2020
1.0.0-preview-392233243 600 11/30/2020
1.0.0-preview-392187079 642 11/30/2020
1.0.0-preview-390203270 581 11/29/2020
1.0.0-preview-387146713 662 11/27/2020
1.0.0-preview-386097798 699 11/26/2020
1.0.0-preview-385867359 703 11/26/2020
1.0.0-preview-385523380 585 11/26/2020
1.0.0-preview-384128234 682 11/25/2020
1.0.0-preview-374537774 648 11/20/2020
1.0.0-preview-374468367 577 11/20/2020
1.0.0-preview-368681212 623 11/17/2020
1.0.0-preview-368659044 698 11/17/2020
1.0.0-preview-364746088 717 11/15/2020
1.0.0-preview-364706087 665 11/15/2020
1.0.0-preview-363372268 594 11/14/2020
1.0.0-preview-362038354 618 11/13/2020
1.0.0-preview-362004577 630 11/13/2020
1.0.0-preview-361488593 567 11/13/2020
1.0.0-preview-360710530 623 11/13/2020
1.0.0-preview-359756455 628 11/12/2020
1.0.0-preview-358333968 650 11/11/2020
1.0.0-preview-358184921 660 11/11/2020
1.0.0-preview-358174946 632 11/11/2020
1.0.0-preview-349704450 725 11/6/2020
1.0.0-preview-349564717 706 11/6/2020
1.0.0-preview-343634015 705 11/3/2020
1.0.0-preview-343610434 637 11/3/2020
1.0.0-preview-328097867 917 10/26/2020
1.0.0-preview-322875134 661 10/22/2020
1.0.0-preview-315311536 605 10/19/2020
1.0.0-preview-309180753 641 10/15/2020
1.0.0-preview-309013019 698 10/15/2020
1.0.0-preview-308920132 617 10/15/2020
1.0.0-preview-308837132 651 10/15/2020
1.0.0-preview-308751690 655 10/15/2020
1.0.0-preview-308593840 661 10/15/2020
1.0.0-preview-299173506 736 10/10/2020
1.0.0-preview-292259854 734 10/6/2020
1.0.0-preview-291985511 688 10/6/2020
1.0.0-preview-291903007 638 10/6/2020
1.0.0-preview-291722399 709 10/6/2020
1.0.0-preview-284981464 649 10/2/2020
1.0.0-preview-284595614 620 10/2/2020
1.0.0-preview-280886714 699 9/30/2020
1.0.0-preview-278989673 649 9/29/2020
1.0.0-preview-277686264 629 9/29/2020
1.0.0-preview-277653295 655 9/29/2020
1.0.0-preview-275730148 713 9/28/2020
1.0.0-preview-275727262 681 9/28/2020
1.0.0-preview-267667710 711 9/22/2020
1.0.0-preview-263264614 742 9/20/2020
1.0.0-preview-263250971 774 9/20/2020
1.0.0-preview-262623253 629 9/19/2020
1.0.0-preview-258339834 658 9/16/2020
1.0.0-preview-258210544 699 9/16/2020
1.0.0-preview-258177528 743 9/16/2020
1.0.0-preview-258119380 735 9/16/2020
1.0.0-preview-256594931 696 9/16/2020
1.0.0-preview-256435175 744 9/15/2020
1.0.0-preview-253816091 648 9/14/2020
1.0.0-preview-253197654 670 9/14/2020
1.0.0-preview-247523274 621 9/10/2020
1.0.0-preview-247118168 695 9/9/2020
1.0.0-preview-246444372 752 9/9/2020
1.0.0-preview-246434361 728 9/9/2020
1.0.0-preview-246402060 601 9/9/2020
1.0.0-preview-245105781 632 9/8/2020
1.0.0-preview-244918410 686 9/8/2020
1.0.0-preview-243478925 629 9/7/2020
1.0.0-preview-243471084 646 9/7/2020
1.0.0-preview-243323135 755 9/7/2020
1.0.0-preview-1413494063 564 11/2/2021
1.0.0-preview-1405354284 517 10/31/2021
1.0.0-preview-1338129467 562 10/13/2021
1.0.0-preview-1327345305 656 10/11/2021
1.0.0-preview-1325686991 504 10/10/2021
1.0.0-preview-1324682939 661 10/10/2021
1.0.0-preview-1239345497 574 9/15/2021
1.0.0-preview-1227879651 570 9/13/2021
1.0.0-preview-1227810778 571 9/13/2021
1.0.0-preview-1222163389 554 9/10/2021
1.0.0-preview-1177844564 581 8/28/2021
1.0.0-preview-1176119659 489 8/28/2021
1.0.0-preview-1176116073 511 8/28/2021
1.0.0-preview-1176112166 473 8/28/2021
1.0.0-preview-1172193368 503 8/26/2021
1.0.0-preview-1168287221 489 8/25/2021
1.0.0-preview-1147185155 573 8/19/2021
1.0.0-preview-1133286135 612 8/15/2021
1.0.0-preview-1118120224 590 8/10/2021
1.0.0-preview-1111420036 504 8/9/2021
1.0.0-preview-1111385512 435 8/9/2021
1.0.0-preview-1111166736 501 8/9/2021
1.0.0-preview-1088380884 526 8/1/2021
1.0.0-preview-1088311063 530 8/1/2021
1.0.0-preview-1088021240 603 8/1/2021
1.0.0-preview-1083990424 553 7/31/2021
1.0.0-preview-1080710191 518 7/30/2021
1.0.0-preview-1080701269 546 7/30/2021
1.0.0-preview-1079028054 551 7/29/2021
1.0.0-preview-1079000079 546 7/29/2021
1.0.0-preview-1078977564 605 7/29/2021
1.0.0-preview-1069218438 461 7/26/2021
1.0.0-preview-1065692127 606 7/26/2021
1.0.0-preview-1054554829 507 7/22/2021
1.0.0-preview-1054460177 566 7/22/2021
1.0.0-preview-1044919966 527 7/19/2021
1.0.0-preview-1043697034 460 7/19/2021
1.0.0-preview-1001211231 554 7/5/2021
1.0.0-preview-1001204475 524 7/5/2021
0.9.5-preview-243240046 763 9/7/2020
0.9.5-preview-243219862 786 9/7/2020