DiffSharp.Backends.Torch 1.0.0-preview-1118120224

This is a prerelease version of DiffSharp.Backends.Torch.
There is a newer version of this package available.
See the version list below for details.
dotnet add package DiffSharp.Backends.Torch --version 1.0.0-preview-1118120224
                    
NuGet\Install-Package DiffSharp.Backends.Torch -Version 1.0.0-preview-1118120224
                    
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-1118120224" />
                    
For projects that support PackageReference, copy this XML node into the project file to reference the package.
<PackageVersion Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-1118120224" />
                    
Directory.Packages.props
<PackageReference Include="DiffSharp.Backends.Torch" />
                    
Project file
For projects that support Central Package Management (CPM), copy this XML node into the solution Directory.Packages.props file to version the package.
paket add DiffSharp.Backends.Torch --version 1.0.0-preview-1118120224
                    
#r "nuget: DiffSharp.Backends.Torch, 1.0.0-preview-1118120224"
                    
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
#addin nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-1118120224&prerelease
                    
Install as a Cake Addin
#tool nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-1118120224&prerelease
                    
Install as a Cake Tool

Package Description

Product Compatible and additional computed target framework versions.
.NET net5.0 is compatible.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed.  net10.0 was computed.  net10.0-android was computed.  net10.0-browser was computed.  net10.0-ios was computed.  net10.0-maccatalyst was computed.  net10.0-macos was computed.  net10.0-tvos was computed.  net10.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (5)

Showing the top 5 NuGet packages that depend on DiffSharp.Backends.Torch:

Package Downloads
DiffSharp-cuda-windows

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cuda-linux

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cpu

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-lite

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

FAkka.Mathnet.Symbolic.withTensorSupported

Package Description

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last Updated
1.0.7 6,059 3/26/2022
1.0.7-preview2044360861 443 3/26/2022
1.0.7-preview1873603133 480 2/21/2022
1.0.7-preview1872895008 469 2/20/2022
1.0.7-preview1872194677 459 2/20/2022
1.0.7-preview1867437105 438 2/19/2022
1.0.7-preview1838897476 482 2/14/2022
1.0.7-preview1838869913 449 2/14/2022
1.0.6 6,699 2/9/2022
1.0.6-preview1838805210 460 2/14/2022
1.0.6-preview1838790927 535 2/14/2022
1.0.6-preview1838781533 487 2/14/2022
1.0.6-preview1838761310 445 2/14/2022
1.0.6-preview1838574327 523 2/14/2022
1.0.6-preview1838238393 479 2/13/2022
1.0.6-preview1837967313 504 2/13/2022
1.0.6-preview1837932839 325 2/13/2022
1.0.6-preview1837857091 323 2/13/2022
1.0.5 3,661 2/9/2022
1.0.4 3,813 2/8/2022
1.0.3 4,914 2/8/2022
1.0.2 4,032 2/8/2022
1.0.1 4,882 11/8/2021
1.0.0-preview-987646120 633 6/30/2021
1.0.0-preview-964642900 596 6/23/2021
1.0.0-preview-964597118 457 6/23/2021
1.0.0-preview-964532207 515 6/23/2021
1.0.0-preview-964414624 523 6/23/2021
1.0.0-preview-962665709 378 6/23/2021
1.0.0-preview-961120541 426 6/22/2021
1.0.0-preview-958984202 456 6/22/2021
1.0.0-preview-783523654 603 4/25/2021
1.0.0-preview-783503343 506 4/25/2021
1.0.0-preview-783410550 530 4/25/2021
1.0.0-preview-781810429 472 4/25/2021
1.0.0-preview-775752139 564 4/22/2021
1.0.0-preview-774228953 519 4/22/2021
1.0.0-preview-769092916 532 4/21/2021
1.0.0-preview-768013090 504 4/20/2021
1.0.0-preview-762002995 477 4/19/2021
1.0.0-preview-761040762 540 4/18/2021
1.0.0-preview-761018834 569 4/18/2021
1.0.0-preview-756065403 481 4/16/2021
1.0.0-preview-755638011 482 4/16/2021
1.0.0-preview-752421465 511 4/15/2021
1.0.0-preview-748176085 495 4/14/2021
1.0.0-preview-746203897 482 4/13/2021
1.0.0-preview-746138300 512 4/13/2021
1.0.0-preview-745205599 457 4/13/2021
1.0.0-preview-739671157 489 4/12/2021
1.0.0-preview-712483117 501 4/2/2021
1.0.0-preview-699281085 440 3/29/2021
1.0.0-preview-699125312 496 3/29/2021
1.0.0-preview-698458610 539 3/29/2021
1.0.0-preview-697743517 561 3/29/2021
1.0.0-preview-697665469 498 3/29/2021
1.0.0-preview-690194555 503 3/26/2021
1.0.0-preview-688124591 470 3/25/2021
1.0.0-preview-687886352 478 3/25/2021
1.0.0-preview-681551353 507 3/24/2021
1.0.0-preview-681104545 518 3/23/2021
1.0.0-preview-680643606 545 3/23/2021
1.0.0-preview-679950457 498 3/23/2021
1.0.0-preview-669022451 506 3/19/2021
1.0.0-preview-643151273 408 3/11/2021
1.0.0-preview-633398743 481 3/8/2021
1.0.0-preview-633348953 486 3/8/2021
1.0.0-preview-621803110 548 3/4/2021
1.0.0-preview-611561611 528 3/1/2021
1.0.0-preview-611172961 447 3/1/2021
1.0.0-preview-593196134 431 2/23/2021
1.0.0-preview-589424126 484 2/22/2021
1.0.0-preview-589402583 514 2/22/2021
1.0.0-preview-586837684 451 2/21/2021
1.0.0-preview-586440747 505 2/21/2021
1.0.0-preview-498549439 524 1/20/2021
1.0.0-preview-485581354 523 1/14/2021
1.0.0-preview-392545720 604 11/30/2020
1.0.0-preview-392233243 561 11/30/2020
1.0.0-preview-392187079 609 11/30/2020
1.0.0-preview-390203270 549 11/29/2020
1.0.0-preview-387146713 625 11/27/2020
1.0.0-preview-386097798 662 11/26/2020
1.0.0-preview-385867359 663 11/26/2020
1.0.0-preview-385523380 555 11/26/2020
1.0.0-preview-384128234 648 11/25/2020
1.0.0-preview-374537774 609 11/20/2020
1.0.0-preview-374468367 541 11/20/2020
1.0.0-preview-368681212 586 11/17/2020
1.0.0-preview-368659044 665 11/17/2020
1.0.0-preview-364746088 668 11/15/2020
1.0.0-preview-364706087 631 11/15/2020
1.0.0-preview-363372268 561 11/14/2020
1.0.0-preview-362038354 581 11/13/2020
1.0.0-preview-362004577 593 11/13/2020
1.0.0-preview-361488593 531 11/13/2020
1.0.0-preview-360710530 590 11/13/2020
1.0.0-preview-359756455 596 11/12/2020
1.0.0-preview-358333968 615 11/11/2020
1.0.0-preview-358184921 627 11/11/2020
1.0.0-preview-358174946 595 11/11/2020
1.0.0-preview-349704450 687 11/6/2020
1.0.0-preview-349564717 669 11/6/2020
1.0.0-preview-343634015 670 11/3/2020
1.0.0-preview-343610434 604 11/3/2020
1.0.0-preview-328097867 878 10/26/2020
1.0.0-preview-322875134 624 10/22/2020
1.0.0-preview-315311536 568 10/19/2020
1.0.0-preview-309180753 602 10/15/2020
1.0.0-preview-309013019 660 10/15/2020
1.0.0-preview-308920132 573 10/15/2020
1.0.0-preview-308837132 619 10/15/2020
1.0.0-preview-308751690 619 10/15/2020
1.0.0-preview-308593840 623 10/15/2020
1.0.0-preview-299173506 701 10/10/2020
1.0.0-preview-292259854 696 10/6/2020
1.0.0-preview-291985511 653 10/6/2020
1.0.0-preview-291903007 604 10/6/2020
1.0.0-preview-291722399 665 10/6/2020
1.0.0-preview-284981464 619 10/2/2020
1.0.0-preview-284595614 581 10/2/2020
1.0.0-preview-280886714 663 9/30/2020
1.0.0-preview-278989673 614 9/29/2020
1.0.0-preview-277686264 594 9/29/2020
1.0.0-preview-277653295 618 9/29/2020
1.0.0-preview-275730148 676 9/28/2020
1.0.0-preview-275727262 649 9/28/2020
1.0.0-preview-267667710 677 9/22/2020
1.0.0-preview-263264614 708 9/20/2020
1.0.0-preview-263250971 743 9/20/2020
1.0.0-preview-262623253 590 9/19/2020
1.0.0-preview-258339834 626 9/16/2020
1.0.0-preview-258210544 667 9/16/2020
1.0.0-preview-258177528 706 9/16/2020
1.0.0-preview-258119380 700 9/16/2020
1.0.0-preview-256594931 656 9/16/2020
1.0.0-preview-256435175 707 9/15/2020
1.0.0-preview-253816091 613 9/14/2020
1.0.0-preview-253197654 633 9/14/2020
1.0.0-preview-247523274 586 9/10/2020
1.0.0-preview-247118168 665 9/9/2020
1.0.0-preview-246444372 715 9/9/2020
1.0.0-preview-246434361 696 9/9/2020
1.0.0-preview-246402060 566 9/9/2020
1.0.0-preview-245105781 593 9/8/2020
1.0.0-preview-244918410 646 9/8/2020
1.0.0-preview-243478925 598 9/7/2020
1.0.0-preview-243471084 610 9/7/2020
1.0.0-preview-243323135 720 9/7/2020
1.0.0-preview-1413494063 528 11/2/2021
1.0.0-preview-1405354284 483 10/31/2021
1.0.0-preview-1338129467 520 10/13/2021
1.0.0-preview-1327345305 620 10/11/2021
1.0.0-preview-1325686991 471 10/10/2021
1.0.0-preview-1324682939 623 10/10/2021
1.0.0-preview-1239345497 541 9/15/2021
1.0.0-preview-1227879651 536 9/13/2021
1.0.0-preview-1227810778 532 9/13/2021
1.0.0-preview-1222163389 518 9/10/2021
1.0.0-preview-1177844564 544 8/28/2021
1.0.0-preview-1176119659 454 8/28/2021
1.0.0-preview-1176116073 473 8/28/2021
1.0.0-preview-1176112166 438 8/28/2021
1.0.0-preview-1172193368 466 8/26/2021
1.0.0-preview-1168287221 457 8/25/2021
1.0.0-preview-1147185155 534 8/19/2021
1.0.0-preview-1133286135 577 8/15/2021
1.0.0-preview-1118120224 556 8/10/2021
1.0.0-preview-1111420036 467 8/9/2021
1.0.0-preview-1111385512 406 8/9/2021
1.0.0-preview-1111166736 469 8/9/2021
1.0.0-preview-1088380884 490 8/1/2021
1.0.0-preview-1088311063 496 8/1/2021
1.0.0-preview-1088021240 568 8/1/2021
1.0.0-preview-1083990424 517 7/31/2021
1.0.0-preview-1080710191 482 7/30/2021
1.0.0-preview-1080701269 510 7/30/2021
1.0.0-preview-1079028054 515 7/29/2021
1.0.0-preview-1079000079 509 7/29/2021
1.0.0-preview-1078977564 564 7/29/2021
1.0.0-preview-1069218438 426 7/26/2021
1.0.0-preview-1065692127 572 7/26/2021
1.0.0-preview-1054554829 471 7/22/2021
1.0.0-preview-1054460177 531 7/22/2021
1.0.0-preview-1044919966 491 7/19/2021
1.0.0-preview-1043697034 426 7/19/2021
1.0.0-preview-1001211231 520 7/5/2021
1.0.0-preview-1001204475 487 7/5/2021
0.9.5-preview-243240046 728 9/7/2020
0.9.5-preview-243219862 749 9/7/2020