DiffSharp.Backends.Torch 1.0.0-preview-586440747

This is a prerelease version of DiffSharp.Backends.Torch.
There is a newer version of this package available.
See the version list below for details.
dotnet add package DiffSharp.Backends.Torch --version 1.0.0-preview-586440747
                    
NuGet\Install-Package DiffSharp.Backends.Torch -Version 1.0.0-preview-586440747
                    
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-586440747" />
                    
For projects that support PackageReference, copy this XML node into the project file to reference the package.
<PackageVersion Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-586440747" />
                    
Directory.Packages.props
<PackageReference Include="DiffSharp.Backends.Torch" />
                    
Project file
For projects that support Central Package Management (CPM), copy this XML node into the solution Directory.Packages.props file to version the package.
paket add DiffSharp.Backends.Torch --version 1.0.0-preview-586440747
                    
#r "nuget: DiffSharp.Backends.Torch, 1.0.0-preview-586440747"
                    
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
#:package DiffSharp.Backends.Torch@1.0.0-preview-586440747
                    
#:package directive can be used in C# file-based apps starting in .NET 10 preview 4. Copy this into a .cs file before any lines of code to reference the package.
#addin nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-586440747&prerelease
                    
Install as a Cake Addin
#tool nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-586440747&prerelease
                    
Install as a Cake Tool

Package Description

Product Compatible and additional computed target framework versions.
.NET net5.0 is compatible.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed.  net10.0 was computed.  net10.0-android was computed.  net10.0-browser was computed.  net10.0-ios was computed.  net10.0-maccatalyst was computed.  net10.0-macos was computed.  net10.0-tvos was computed.  net10.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (5)

Showing the top 5 NuGet packages that depend on DiffSharp.Backends.Torch:

Package Downloads
DiffSharp-cuda-windows

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cuda-linux

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cpu

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-lite

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

FAkka.Mathnet.Symbolic.withTensorSupported

Package Description

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last Updated
1.0.7 6,505 3/26/2022
1.0.7-preview2044360861 609 3/26/2022
1.0.7-preview1873603133 668 2/21/2022
1.0.7-preview1872895008 656 2/20/2022
1.0.7-preview1872194677 661 2/20/2022
1.0.7-preview1867437105 638 2/19/2022
1.0.7-preview1838897476 638 2/14/2022
1.0.7-preview1838869913 643 2/14/2022
1.0.6 6,883 2/9/2022
1.0.6-preview1838805210 638 2/14/2022
1.0.6-preview1838790927 715 2/14/2022
1.0.6-preview1838781533 642 2/14/2022
1.0.6-preview1838761310 669 2/14/2022
1.0.6-preview1838574327 727 2/14/2022
1.0.6-preview1838238393 666 2/13/2022
1.0.6-preview1837967313 699 2/13/2022
1.0.6-preview1837932839 472 2/13/2022
1.0.6-preview1837857091 471 2/13/2022
1.0.5 3,813 2/9/2022
1.0.4 3,983 2/8/2022
1.0.3 5,073 2/8/2022
1.0.2 4,195 2/8/2022
1.0.1 5,042 11/8/2021
1.0.0-preview-987646120 807 6/30/2021
1.0.0-preview-964642900 777 6/23/2021
1.0.0-preview-964597118 601 6/23/2021
1.0.0-preview-964532207 670 6/23/2021
1.0.0-preview-964414624 676 6/23/2021
1.0.0-preview-962665709 528 6/23/2021
1.0.0-preview-961120541 573 6/22/2021
1.0.0-preview-958984202 610 6/22/2021
1.0.0-preview-783523654 754 4/25/2021
1.0.0-preview-783503343 664 4/25/2021
1.0.0-preview-783410550 695 4/25/2021
1.0.0-preview-781810429 638 4/25/2021
1.0.0-preview-775752139 728 4/22/2021
1.0.0-preview-774228953 694 4/22/2021
1.0.0-preview-769092916 676 4/21/2021
1.0.0-preview-768013090 659 4/20/2021
1.0.0-preview-762002995 644 4/19/2021
1.0.0-preview-761040762 710 4/18/2021
1.0.0-preview-761018834 716 4/18/2021
1.0.0-preview-756065403 610 4/16/2021
1.0.0-preview-755638011 642 4/16/2021
1.0.0-preview-752421465 676 4/15/2021
1.0.0-preview-748176085 671 4/14/2021
1.0.0-preview-746203897 645 4/13/2021
1.0.0-preview-746138300 670 4/13/2021
1.0.0-preview-745205599 628 4/13/2021
1.0.0-preview-739671157 656 4/12/2021
1.0.0-preview-712483117 659 4/2/2021
1.0.0-preview-699281085 606 3/29/2021
1.0.0-preview-699125312 663 3/29/2021
1.0.0-preview-698458610 710 3/29/2021
1.0.0-preview-697743517 721 3/29/2021
1.0.0-preview-697665469 657 3/29/2021
1.0.0-preview-690194555 662 3/26/2021
1.0.0-preview-688124591 644 3/25/2021
1.0.0-preview-687886352 639 3/25/2021
1.0.0-preview-681551353 661 3/24/2021
1.0.0-preview-681104545 695 3/23/2021
1.0.0-preview-680643606 731 3/23/2021
1.0.0-preview-679950457 657 3/23/2021
1.0.0-preview-669022451 670 3/19/2021
1.0.0-preview-643151273 566 3/11/2021
1.0.0-preview-633398743 634 3/8/2021
1.0.0-preview-633348953 667 3/8/2021
1.0.0-preview-621803110 706 3/4/2021
1.0.0-preview-611561611 700 3/1/2021
1.0.0-preview-611172961 610 3/1/2021
1.0.0-preview-593196134 580 2/23/2021
1.0.0-preview-589424126 627 2/22/2021
1.0.0-preview-589402583 658 2/22/2021
1.0.0-preview-586837684 612 2/21/2021
1.0.0-preview-586440747 665 2/21/2021
1.0.0-preview-498549439 664 1/20/2021
1.0.0-preview-485581354 704 1/14/2021
1.0.0-preview-392545720 769 11/30/2020
1.0.0-preview-392233243 717 11/30/2020
1.0.0-preview-392187079 788 11/30/2020
1.0.0-preview-390203270 711 11/29/2020
1.0.0-preview-387146713 805 11/27/2020
1.0.0-preview-386097798 841 11/26/2020
1.0.0-preview-385867359 843 11/26/2020
1.0.0-preview-385523380 722 11/26/2020
1.0.0-preview-384128234 834 11/25/2020
1.0.0-preview-374537774 791 11/20/2020
1.0.0-preview-374468367 686 11/20/2020
1.0.0-preview-368681212 752 11/17/2020
1.0.0-preview-368659044 840 11/17/2020
1.0.0-preview-364746088 873 11/15/2020
1.0.0-preview-364706087 807 11/15/2020
1.0.0-preview-363372268 724 11/14/2020
1.0.0-preview-362038354 769 11/13/2020
1.0.0-preview-362004577 759 11/13/2020
1.0.0-preview-361488593 709 11/13/2020
1.0.0-preview-360710530 755 11/13/2020
1.0.0-preview-359756455 743 11/12/2020
1.0.0-preview-358333968 799 11/11/2020
1.0.0-preview-358184921 802 11/11/2020
1.0.0-preview-358174946 769 11/11/2020
1.0.0-preview-349704450 859 11/6/2020
1.0.0-preview-349564717 841 11/6/2020
1.0.0-preview-343634015 856 11/3/2020
1.0.0-preview-343610434 762 11/3/2020
1.0.0-preview-328097867 1,062 10/26/2020
1.0.0-preview-322875134 802 10/22/2020
1.0.0-preview-315311536 746 10/19/2020
1.0.0-preview-309180753 786 10/15/2020
1.0.0-preview-309013019 826 10/15/2020
1.0.0-preview-308920132 733 10/15/2020
1.0.0-preview-308837132 796 10/15/2020
1.0.0-preview-308751690 762 10/15/2020
1.0.0-preview-308593840 776 10/15/2020
1.0.0-preview-299173506 861 10/10/2020
1.0.0-preview-292259854 868 10/6/2020
1.0.0-preview-291985511 813 10/6/2020
1.0.0-preview-291903007 787 10/6/2020
1.0.0-preview-291722399 815 10/6/2020
1.0.0-preview-284981464 761 10/2/2020
1.0.0-preview-284595614 748 10/2/2020
1.0.0-preview-280886714 821 9/30/2020
1.0.0-preview-278989673 762 9/29/2020
1.0.0-preview-277686264 760 9/29/2020
1.0.0-preview-277653295 769 9/29/2020
1.0.0-preview-275730148 831 9/28/2020
1.0.0-preview-275727262 804 9/28/2020
1.0.0-preview-267667710 853 9/22/2020
1.0.0-preview-263264614 860 9/20/2020
1.0.0-preview-263250971 879 9/20/2020
1.0.0-preview-262623253 750 9/19/2020
1.0.0-preview-258339834 791 9/16/2020
1.0.0-preview-258210544 820 9/16/2020
1.0.0-preview-258177528 862 9/16/2020
1.0.0-preview-258119380 862 9/16/2020
1.0.0-preview-256594931 813 9/16/2020
1.0.0-preview-256435175 886 9/15/2020
1.0.0-preview-253816091 785 9/14/2020
1.0.0-preview-253197654 807 9/14/2020
1.0.0-preview-247523274 748 9/10/2020
1.0.0-preview-247118168 832 9/9/2020
1.0.0-preview-246444372 876 9/9/2020
1.0.0-preview-246434361 834 9/9/2020
1.0.0-preview-246402060 756 9/9/2020
1.0.0-preview-245105781 769 9/8/2020
1.0.0-preview-244918410 838 9/8/2020
1.0.0-preview-243478925 755 9/7/2020
1.0.0-preview-243471084 798 9/7/2020
1.0.0-preview-243323135 897 9/7/2020
1.0.0-preview-1413494063 694 11/2/2021
1.0.0-preview-1405354284 633 10/31/2021
1.0.0-preview-1338129467 685 10/13/2021
1.0.0-preview-1327345305 778 10/11/2021
1.0.0-preview-1325686991 621 10/10/2021
1.0.0-preview-1324682939 768 10/10/2021
1.0.0-preview-1239345497 700 9/15/2021
1.0.0-preview-1227879651 676 9/13/2021
1.0.0-preview-1227810778 679 9/13/2021
1.0.0-preview-1222163389 671 9/10/2021
1.0.0-preview-1177844564 717 8/28/2021
1.0.0-preview-1176119659 624 8/28/2021
1.0.0-preview-1176116073 631 8/28/2021
1.0.0-preview-1176112166 599 8/28/2021
1.0.0-preview-1172193368 621 8/26/2021
1.0.0-preview-1168287221 610 8/25/2021
1.0.0-preview-1147185155 697 8/19/2021
1.0.0-preview-1133286135 740 8/15/2021
1.0.0-preview-1118120224 710 8/10/2021
1.0.0-preview-1111420036 623 8/9/2021
1.0.0-preview-1111385512 558 8/9/2021
1.0.0-preview-1111166736 616 8/9/2021
1.0.0-preview-1088380884 647 8/1/2021
1.0.0-preview-1088311063 654 8/1/2021
1.0.0-preview-1088021240 728 8/1/2021
1.0.0-preview-1083990424 670 7/31/2021
1.0.0-preview-1080710191 652 7/30/2021
1.0.0-preview-1080701269 675 7/30/2021
1.0.0-preview-1079028054 678 7/29/2021
1.0.0-preview-1079000079 679 7/29/2021
1.0.0-preview-1078977564 753 7/29/2021
1.0.0-preview-1069218438 591 7/26/2021
1.0.0-preview-1065692127 715 7/26/2021
1.0.0-preview-1054554829 631 7/22/2021
1.0.0-preview-1054460177 685 7/22/2021
1.0.0-preview-1044919966 674 7/19/2021
1.0.0-preview-1043697034 571 7/19/2021
1.0.0-preview-1001211231 671 7/5/2021
1.0.0-preview-1001204475 664 7/5/2021
0.9.5-preview-243240046 885 9/7/2020
0.9.5-preview-243219862 940 9/7/2020