DiffSharp.Backends.Torch 1.0.0-preview-1078977564

This is a prerelease version of DiffSharp.Backends.Torch.
There is a newer version of this package available.
See the version list below for details.
dotnet add package DiffSharp.Backends.Torch --version 1.0.0-preview-1078977564
                    
NuGet\Install-Package DiffSharp.Backends.Torch -Version 1.0.0-preview-1078977564
                    
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-1078977564" />
                    
For projects that support PackageReference, copy this XML node into the project file to reference the package.
<PackageVersion Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-1078977564" />
                    
Directory.Packages.props
<PackageReference Include="DiffSharp.Backends.Torch" />
                    
Project file
For projects that support Central Package Management (CPM), copy this XML node into the solution Directory.Packages.props file to version the package.
paket add DiffSharp.Backends.Torch --version 1.0.0-preview-1078977564
                    
#r "nuget: DiffSharp.Backends.Torch, 1.0.0-preview-1078977564"
                    
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
#:package DiffSharp.Backends.Torch@1.0.0-preview-1078977564
                    
#:package directive can be used in C# file-based apps starting in .NET 10 preview 4. Copy this into a .cs file before any lines of code to reference the package.
#addin nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-1078977564&prerelease
                    
Install as a Cake Addin
#tool nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-1078977564&prerelease
                    
Install as a Cake Tool

Package Description

Product Compatible and additional computed target framework versions.
.NET net5.0 is compatible.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed.  net10.0 was computed.  net10.0-android was computed.  net10.0-browser was computed.  net10.0-ios was computed.  net10.0-maccatalyst was computed.  net10.0-macos was computed.  net10.0-tvos was computed.  net10.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (5)

Showing the top 5 NuGet packages that depend on DiffSharp.Backends.Torch:

Package Downloads
DiffSharp-cuda-windows

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cuda-linux

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cpu

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-lite

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

FAkka.Mathnet.Symbolic.withTensorSupported

Package Description

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last Updated
1.0.7 6,502 3/26/2022
1.0.7-preview2044360861 608 3/26/2022
1.0.7-preview1873603133 665 2/21/2022
1.0.7-preview1872895008 652 2/20/2022
1.0.7-preview1872194677 658 2/20/2022
1.0.7-preview1867437105 634 2/19/2022
1.0.7-preview1838897476 635 2/14/2022
1.0.7-preview1838869913 639 2/14/2022
1.0.6 6,880 2/9/2022
1.0.6-preview1838805210 634 2/14/2022
1.0.6-preview1838790927 711 2/14/2022
1.0.6-preview1838781533 638 2/14/2022
1.0.6-preview1838761310 665 2/14/2022
1.0.6-preview1838574327 723 2/14/2022
1.0.6-preview1838238393 661 2/13/2022
1.0.6-preview1837967313 695 2/13/2022
1.0.6-preview1837932839 469 2/13/2022
1.0.6-preview1837857091 468 2/13/2022
1.0.5 3,810 2/9/2022
1.0.4 3,980 2/8/2022
1.0.3 5,070 2/8/2022
1.0.2 4,192 2/8/2022
1.0.1 5,039 11/8/2021
1.0.0-preview-987646120 803 6/30/2021
1.0.0-preview-964642900 774 6/23/2021
1.0.0-preview-964597118 598 6/23/2021
1.0.0-preview-964532207 665 6/23/2021
1.0.0-preview-964414624 672 6/23/2021
1.0.0-preview-962665709 524 6/23/2021
1.0.0-preview-961120541 569 6/22/2021
1.0.0-preview-958984202 606 6/22/2021
1.0.0-preview-783523654 751 4/25/2021
1.0.0-preview-783503343 658 4/25/2021
1.0.0-preview-783410550 692 4/25/2021
1.0.0-preview-781810429 635 4/25/2021
1.0.0-preview-775752139 724 4/22/2021
1.0.0-preview-774228953 691 4/22/2021
1.0.0-preview-769092916 673 4/21/2021
1.0.0-preview-768013090 656 4/20/2021
1.0.0-preview-762002995 641 4/19/2021
1.0.0-preview-761040762 705 4/18/2021
1.0.0-preview-761018834 711 4/18/2021
1.0.0-preview-756065403 606 4/16/2021
1.0.0-preview-755638011 639 4/16/2021
1.0.0-preview-752421465 673 4/15/2021
1.0.0-preview-748176085 668 4/14/2021
1.0.0-preview-746203897 642 4/13/2021
1.0.0-preview-746138300 667 4/13/2021
1.0.0-preview-745205599 625 4/13/2021
1.0.0-preview-739671157 653 4/12/2021
1.0.0-preview-712483117 655 4/2/2021
1.0.0-preview-699281085 603 3/29/2021
1.0.0-preview-699125312 658 3/29/2021
1.0.0-preview-698458610 706 3/29/2021
1.0.0-preview-697743517 717 3/29/2021
1.0.0-preview-697665469 654 3/29/2021
1.0.0-preview-690194555 659 3/26/2021
1.0.0-preview-688124591 641 3/25/2021
1.0.0-preview-687886352 635 3/25/2021
1.0.0-preview-681551353 658 3/24/2021
1.0.0-preview-681104545 691 3/23/2021
1.0.0-preview-680643606 727 3/23/2021
1.0.0-preview-679950457 652 3/23/2021
1.0.0-preview-669022451 666 3/19/2021
1.0.0-preview-643151273 562 3/11/2021
1.0.0-preview-633398743 630 3/8/2021
1.0.0-preview-633348953 663 3/8/2021
1.0.0-preview-621803110 701 3/4/2021
1.0.0-preview-611561611 696 3/1/2021
1.0.0-preview-611172961 605 3/1/2021
1.0.0-preview-593196134 576 2/23/2021
1.0.0-preview-589424126 623 2/22/2021
1.0.0-preview-589402583 653 2/22/2021
1.0.0-preview-586837684 607 2/21/2021
1.0.0-preview-586440747 661 2/21/2021
1.0.0-preview-498549439 660 1/20/2021
1.0.0-preview-485581354 699 1/14/2021
1.0.0-preview-392545720 765 11/30/2020
1.0.0-preview-392233243 713 11/30/2020
1.0.0-preview-392187079 783 11/30/2020
1.0.0-preview-390203270 707 11/29/2020
1.0.0-preview-387146713 801 11/27/2020
1.0.0-preview-386097798 835 11/26/2020
1.0.0-preview-385867359 839 11/26/2020
1.0.0-preview-385523380 718 11/26/2020
1.0.0-preview-384128234 829 11/25/2020
1.0.0-preview-374537774 787 11/20/2020
1.0.0-preview-374468367 680 11/20/2020
1.0.0-preview-368681212 748 11/17/2020
1.0.0-preview-368659044 836 11/17/2020
1.0.0-preview-364746088 869 11/15/2020
1.0.0-preview-364706087 802 11/15/2020
1.0.0-preview-363372268 720 11/14/2020
1.0.0-preview-362038354 765 11/13/2020
1.0.0-preview-362004577 754 11/13/2020
1.0.0-preview-361488593 705 11/13/2020
1.0.0-preview-360710530 751 11/13/2020
1.0.0-preview-359756455 739 11/12/2020
1.0.0-preview-358333968 795 11/11/2020
1.0.0-preview-358184921 797 11/11/2020
1.0.0-preview-358174946 764 11/11/2020
1.0.0-preview-349704450 855 11/6/2020
1.0.0-preview-349564717 835 11/6/2020
1.0.0-preview-343634015 850 11/3/2020
1.0.0-preview-343610434 757 11/3/2020
1.0.0-preview-328097867 1,058 10/26/2020
1.0.0-preview-322875134 797 10/22/2020
1.0.0-preview-315311536 742 10/19/2020
1.0.0-preview-309180753 782 10/15/2020
1.0.0-preview-309013019 821 10/15/2020
1.0.0-preview-308920132 728 10/15/2020
1.0.0-preview-308837132 792 10/15/2020
1.0.0-preview-308751690 756 10/15/2020
1.0.0-preview-308593840 772 10/15/2020
1.0.0-preview-299173506 857 10/10/2020
1.0.0-preview-292259854 863 10/6/2020
1.0.0-preview-291985511 808 10/6/2020
1.0.0-preview-291903007 783 10/6/2020
1.0.0-preview-291722399 811 10/6/2020
1.0.0-preview-284981464 757 10/2/2020
1.0.0-preview-284595614 743 10/2/2020
1.0.0-preview-280886714 817 9/30/2020
1.0.0-preview-278989673 758 9/29/2020
1.0.0-preview-277686264 756 9/29/2020
1.0.0-preview-277653295 765 9/29/2020
1.0.0-preview-275730148 827 9/28/2020
1.0.0-preview-275727262 799 9/28/2020
1.0.0-preview-267667710 848 9/22/2020
1.0.0-preview-263264614 855 9/20/2020
1.0.0-preview-263250971 874 9/20/2020
1.0.0-preview-262623253 746 9/19/2020
1.0.0-preview-258339834 787 9/16/2020
1.0.0-preview-258210544 814 9/16/2020
1.0.0-preview-258177528 857 9/16/2020
1.0.0-preview-258119380 858 9/16/2020
1.0.0-preview-256594931 809 9/16/2020
1.0.0-preview-256435175 882 9/15/2020
1.0.0-preview-253816091 780 9/14/2020
1.0.0-preview-253197654 803 9/14/2020
1.0.0-preview-247523274 743 9/10/2020
1.0.0-preview-247118168 828 9/9/2020
1.0.0-preview-246444372 871 9/9/2020
1.0.0-preview-246434361 829 9/9/2020
1.0.0-preview-246402060 752 9/9/2020
1.0.0-preview-245105781 764 9/8/2020
1.0.0-preview-244918410 834 9/8/2020
1.0.0-preview-243478925 751 9/7/2020
1.0.0-preview-243471084 792 9/7/2020
1.0.0-preview-243323135 893 9/7/2020
1.0.0-preview-1413494063 691 11/2/2021
1.0.0-preview-1405354284 629 10/31/2021
1.0.0-preview-1338129467 682 10/13/2021
1.0.0-preview-1327345305 774 10/11/2021
1.0.0-preview-1325686991 618 10/10/2021
1.0.0-preview-1324682939 764 10/10/2021
1.0.0-preview-1239345497 696 9/15/2021
1.0.0-preview-1227879651 673 9/13/2021
1.0.0-preview-1227810778 676 9/13/2021
1.0.0-preview-1222163389 667 9/10/2021
1.0.0-preview-1177844564 713 8/28/2021
1.0.0-preview-1176119659 620 8/28/2021
1.0.0-preview-1176116073 626 8/28/2021
1.0.0-preview-1176112166 595 8/28/2021
1.0.0-preview-1172193368 616 8/26/2021
1.0.0-preview-1168287221 604 8/25/2021
1.0.0-preview-1147185155 693 8/19/2021
1.0.0-preview-1133286135 735 8/15/2021
1.0.0-preview-1118120224 705 8/10/2021
1.0.0-preview-1111420036 618 8/9/2021
1.0.0-preview-1111385512 554 8/9/2021
1.0.0-preview-1111166736 611 8/9/2021
1.0.0-preview-1088380884 643 8/1/2021
1.0.0-preview-1088311063 650 8/1/2021
1.0.0-preview-1088021240 723 8/1/2021
1.0.0-preview-1083990424 663 7/31/2021
1.0.0-preview-1080710191 647 7/30/2021
1.0.0-preview-1080701269 671 7/30/2021
1.0.0-preview-1079028054 674 7/29/2021
1.0.0-preview-1079000079 674 7/29/2021
1.0.0-preview-1078977564 748 7/29/2021
1.0.0-preview-1069218438 587 7/26/2021
1.0.0-preview-1065692127 711 7/26/2021
1.0.0-preview-1054554829 625 7/22/2021
1.0.0-preview-1054460177 681 7/22/2021
1.0.0-preview-1044919966 669 7/19/2021
1.0.0-preview-1043697034 567 7/19/2021
1.0.0-preview-1001211231 665 7/5/2021
1.0.0-preview-1001204475 659 7/5/2021
0.9.5-preview-243240046 880 9/7/2020
0.9.5-preview-243219862 936 9/7/2020