DiffSharp.Backends.Torch 1.0.0-preview-783410550

This is a prerelease version of DiffSharp.Backends.Torch.
There is a newer version of this package available.
See the version list below for details.
dotnet add package DiffSharp.Backends.Torch --version 1.0.0-preview-783410550
                    
NuGet\Install-Package DiffSharp.Backends.Torch -Version 1.0.0-preview-783410550
                    
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-783410550" />
                    
For projects that support PackageReference, copy this XML node into the project file to reference the package.
<PackageVersion Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-783410550" />
                    
Directory.Packages.props
<PackageReference Include="DiffSharp.Backends.Torch" />
                    
Project file
For projects that support Central Package Management (CPM), copy this XML node into the solution Directory.Packages.props file to version the package.
paket add DiffSharp.Backends.Torch --version 1.0.0-preview-783410550
                    
#r "nuget: DiffSharp.Backends.Torch, 1.0.0-preview-783410550"
                    
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
#:package DiffSharp.Backends.Torch@1.0.0-preview-783410550
                    
#:package directive can be used in C# file-based apps starting in .NET 10 preview 4. Copy this into a .cs file before any lines of code to reference the package.
#addin nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-783410550&prerelease
                    
Install as a Cake Addin
#tool nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-783410550&prerelease
                    
Install as a Cake Tool

Package Description

Product Compatible and additional computed target framework versions.
.NET net5.0 is compatible.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed.  net10.0 was computed.  net10.0-android was computed.  net10.0-browser was computed.  net10.0-ios was computed.  net10.0-maccatalyst was computed.  net10.0-macos was computed.  net10.0-tvos was computed.  net10.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (5)

Showing the top 5 NuGet packages that depend on DiffSharp.Backends.Torch:

Package Downloads
DiffSharp-cuda-windows

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cuda-linux

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cpu

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-lite

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

FAkka.Mathnet.Symbolic.withTensorSupported

Package Description

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last Updated
1.0.7 6,173 3/26/2022
1.0.7-preview2044360861 479 3/26/2022
1.0.7-preview1873603133 527 2/21/2022
1.0.7-preview1872895008 519 2/20/2022
1.0.7-preview1872194677 501 2/20/2022
1.0.7-preview1867437105 484 2/19/2022
1.0.7-preview1838897476 521 2/14/2022
1.0.7-preview1838869913 495 2/14/2022
1.0.6 6,745 2/9/2022
1.0.6-preview1838805210 506 2/14/2022
1.0.6-preview1838790927 580 2/14/2022
1.0.6-preview1838781533 532 2/14/2022
1.0.6-preview1838761310 489 2/14/2022
1.0.6-preview1838574327 572 2/14/2022
1.0.6-preview1838238393 526 2/13/2022
1.0.6-preview1837967313 552 2/13/2022
1.0.6-preview1837932839 373 2/13/2022
1.0.6-preview1837857091 367 2/13/2022
1.0.5 3,708 2/9/2022
1.0.4 3,857 2/8/2022
1.0.3 4,964 2/8/2022
1.0.2 4,084 2/8/2022
1.0.1 4,926 11/8/2021
1.0.0-preview-987646120 685 6/30/2021
1.0.0-preview-964642900 644 6/23/2021
1.0.0-preview-964597118 501 6/23/2021
1.0.0-preview-964532207 565 6/23/2021
1.0.0-preview-964414624 569 6/23/2021
1.0.0-preview-962665709 431 6/23/2021
1.0.0-preview-961120541 481 6/22/2021
1.0.0-preview-958984202 507 6/22/2021
1.0.0-preview-783523654 649 4/25/2021
1.0.0-preview-783503343 548 4/25/2021
1.0.0-preview-783410550 581 4/25/2021
1.0.0-preview-781810429 522 4/25/2021
1.0.0-preview-775752139 610 4/22/2021
1.0.0-preview-774228953 565 4/22/2021
1.0.0-preview-769092916 577 4/21/2021
1.0.0-preview-768013090 549 4/20/2021
1.0.0-preview-762002995 528 4/19/2021
1.0.0-preview-761040762 588 4/18/2021
1.0.0-preview-761018834 614 4/18/2021
1.0.0-preview-756065403 524 4/16/2021
1.0.0-preview-755638011 528 4/16/2021
1.0.0-preview-752421465 557 4/15/2021
1.0.0-preview-748176085 541 4/14/2021
1.0.0-preview-746203897 528 4/13/2021
1.0.0-preview-746138300 557 4/13/2021
1.0.0-preview-745205599 505 4/13/2021
1.0.0-preview-739671157 537 4/12/2021
1.0.0-preview-712483117 544 4/2/2021
1.0.0-preview-699281085 483 3/29/2021
1.0.0-preview-699125312 538 3/29/2021
1.0.0-preview-698458610 586 3/29/2021
1.0.0-preview-697743517 605 3/29/2021
1.0.0-preview-697665469 546 3/29/2021
1.0.0-preview-690194555 551 3/26/2021
1.0.0-preview-688124591 515 3/25/2021
1.0.0-preview-687886352 514 3/25/2021
1.0.0-preview-681551353 556 3/24/2021
1.0.0-preview-681104545 564 3/23/2021
1.0.0-preview-680643606 594 3/23/2021
1.0.0-preview-679950457 541 3/23/2021
1.0.0-preview-669022451 550 3/19/2021
1.0.0-preview-643151273 448 3/11/2021
1.0.0-preview-633398743 528 3/8/2021
1.0.0-preview-633348953 531 3/8/2021
1.0.0-preview-621803110 594 3/4/2021
1.0.0-preview-611561611 579 3/1/2021
1.0.0-preview-611172961 496 3/1/2021
1.0.0-preview-593196134 469 2/23/2021
1.0.0-preview-589424126 523 2/22/2021
1.0.0-preview-589402583 551 2/22/2021
1.0.0-preview-586837684 498 2/21/2021
1.0.0-preview-586440747 547 2/21/2021
1.0.0-preview-498549439 570 1/20/2021
1.0.0-preview-485581354 590 1/14/2021
1.0.0-preview-392545720 653 11/30/2020
1.0.0-preview-392233243 613 11/30/2020
1.0.0-preview-392187079 653 11/30/2020
1.0.0-preview-390203270 590 11/29/2020
1.0.0-preview-387146713 672 11/27/2020
1.0.0-preview-386097798 713 11/26/2020
1.0.0-preview-385867359 715 11/26/2020
1.0.0-preview-385523380 594 11/26/2020
1.0.0-preview-384128234 692 11/25/2020
1.0.0-preview-374537774 663 11/20/2020
1.0.0-preview-374468367 588 11/20/2020
1.0.0-preview-368681212 631 11/17/2020
1.0.0-preview-368659044 709 11/17/2020
1.0.0-preview-364746088 728 11/15/2020
1.0.0-preview-364706087 675 11/15/2020
1.0.0-preview-363372268 605 11/14/2020
1.0.0-preview-362038354 630 11/13/2020
1.0.0-preview-362004577 644 11/13/2020
1.0.0-preview-361488593 578 11/13/2020
1.0.0-preview-360710530 632 11/13/2020
1.0.0-preview-359756455 636 11/12/2020
1.0.0-preview-358333968 661 11/11/2020
1.0.0-preview-358184921 670 11/11/2020
1.0.0-preview-358174946 644 11/11/2020
1.0.0-preview-349704450 738 11/6/2020
1.0.0-preview-349564717 718 11/6/2020
1.0.0-preview-343634015 717 11/3/2020
1.0.0-preview-343610434 649 11/3/2020
1.0.0-preview-328097867 933 10/26/2020
1.0.0-preview-322875134 675 10/22/2020
1.0.0-preview-315311536 618 10/19/2020
1.0.0-preview-309180753 653 10/15/2020
1.0.0-preview-309013019 712 10/15/2020
1.0.0-preview-308920132 632 10/15/2020
1.0.0-preview-308837132 665 10/15/2020
1.0.0-preview-308751690 669 10/15/2020
1.0.0-preview-308593840 680 10/15/2020
1.0.0-preview-299173506 747 10/10/2020
1.0.0-preview-292259854 745 10/6/2020
1.0.0-preview-291985511 700 10/6/2020
1.0.0-preview-291903007 648 10/6/2020
1.0.0-preview-291722399 723 10/6/2020
1.0.0-preview-284981464 659 10/2/2020
1.0.0-preview-284595614 633 10/2/2020
1.0.0-preview-280886714 711 9/30/2020
1.0.0-preview-278989673 659 9/29/2020
1.0.0-preview-277686264 642 9/29/2020
1.0.0-preview-277653295 664 9/29/2020
1.0.0-preview-275730148 724 9/28/2020
1.0.0-preview-275727262 689 9/28/2020
1.0.0-preview-267667710 720 9/22/2020
1.0.0-preview-263264614 751 9/20/2020
1.0.0-preview-263250971 784 9/20/2020
1.0.0-preview-262623253 638 9/19/2020
1.0.0-preview-258339834 668 9/16/2020
1.0.0-preview-258210544 707 9/16/2020
1.0.0-preview-258177528 755 9/16/2020
1.0.0-preview-258119380 747 9/16/2020
1.0.0-preview-256594931 708 9/16/2020
1.0.0-preview-256435175 756 9/15/2020
1.0.0-preview-253816091 659 9/14/2020
1.0.0-preview-253197654 680 9/14/2020
1.0.0-preview-247523274 634 9/10/2020
1.0.0-preview-247118168 705 9/9/2020
1.0.0-preview-246444372 764 9/9/2020
1.0.0-preview-246434361 739 9/9/2020
1.0.0-preview-246402060 616 9/9/2020
1.0.0-preview-245105781 647 9/8/2020
1.0.0-preview-244918410 700 9/8/2020
1.0.0-preview-243478925 638 9/7/2020
1.0.0-preview-243471084 660 9/7/2020
1.0.0-preview-243323135 768 9/7/2020
1.0.0-preview-1413494063 576 11/2/2021
1.0.0-preview-1405354284 530 10/31/2021
1.0.0-preview-1338129467 576 10/13/2021
1.0.0-preview-1327345305 665 10/11/2021
1.0.0-preview-1325686991 519 10/10/2021
1.0.0-preview-1324682939 673 10/10/2021
1.0.0-preview-1239345497 583 9/15/2021
1.0.0-preview-1227879651 581 9/13/2021
1.0.0-preview-1227810778 581 9/13/2021
1.0.0-preview-1222163389 567 9/10/2021
1.0.0-preview-1177844564 595 8/28/2021
1.0.0-preview-1176119659 499 8/28/2021
1.0.0-preview-1176116073 520 8/28/2021
1.0.0-preview-1176112166 486 8/28/2021
1.0.0-preview-1172193368 516 8/26/2021
1.0.0-preview-1168287221 500 8/25/2021
1.0.0-preview-1147185155 583 8/19/2021
1.0.0-preview-1133286135 622 8/15/2021
1.0.0-preview-1118120224 602 8/10/2021
1.0.0-preview-1111420036 517 8/9/2021
1.0.0-preview-1111385512 443 8/9/2021
1.0.0-preview-1111166736 511 8/9/2021
1.0.0-preview-1088380884 539 8/1/2021
1.0.0-preview-1088311063 543 8/1/2021
1.0.0-preview-1088021240 619 8/1/2021
1.0.0-preview-1083990424 564 7/31/2021
1.0.0-preview-1080710191 530 7/30/2021
1.0.0-preview-1080701269 556 7/30/2021
1.0.0-preview-1079028054 563 7/29/2021
1.0.0-preview-1079000079 559 7/29/2021
1.0.0-preview-1078977564 615 7/29/2021
1.0.0-preview-1069218438 470 7/26/2021
1.0.0-preview-1065692127 617 7/26/2021
1.0.0-preview-1054554829 518 7/22/2021
1.0.0-preview-1054460177 581 7/22/2021
1.0.0-preview-1044919966 538 7/19/2021
1.0.0-preview-1043697034 472 7/19/2021
1.0.0-preview-1001211231 567 7/5/2021
1.0.0-preview-1001204475 535 7/5/2021
0.9.5-preview-243240046 772 9/7/2020
0.9.5-preview-243219862 797 9/7/2020