DiffSharp.Backends.Torch 1.0.6-preview1838805210

This is a prerelease version of DiffSharp.Backends.Torch.
There is a newer version of this package available.
See the version list below for details.
dotnet add package DiffSharp.Backends.Torch --version 1.0.6-preview1838805210
                    
NuGet\Install-Package DiffSharp.Backends.Torch -Version 1.0.6-preview1838805210
                    
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="DiffSharp.Backends.Torch" Version="1.0.6-preview1838805210" />
                    
For projects that support PackageReference, copy this XML node into the project file to reference the package.
<PackageVersion Include="DiffSharp.Backends.Torch" Version="1.0.6-preview1838805210" />
                    
Directory.Packages.props
<PackageReference Include="DiffSharp.Backends.Torch" />
                    
Project file
For projects that support Central Package Management (CPM), copy this XML node into the solution Directory.Packages.props file to version the package.
paket add DiffSharp.Backends.Torch --version 1.0.6-preview1838805210
                    
#r "nuget: DiffSharp.Backends.Torch, 1.0.6-preview1838805210"
                    
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
#:package DiffSharp.Backends.Torch@1.0.6-preview1838805210
                    
#:package directive can be used in C# file-based apps starting in .NET 10 preview 4. Copy this into a .cs file before any lines of code to reference the package.
#addin nuget:?package=DiffSharp.Backends.Torch&version=1.0.6-preview1838805210&prerelease
                    
Install as a Cake Addin
#tool nuget:?package=DiffSharp.Backends.Torch&version=1.0.6-preview1838805210&prerelease
                    
Install as a Cake Tool

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

Product Compatible and additional computed target framework versions.
.NET net5.0 is compatible.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed.  net10.0 was computed.  net10.0-android was computed.  net10.0-browser was computed.  net10.0-ios was computed.  net10.0-maccatalyst was computed.  net10.0-macos was computed.  net10.0-tvos was computed.  net10.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (5)

Showing the top 5 NuGet packages that depend on DiffSharp.Backends.Torch:

Package Downloads
DiffSharp-cuda-windows

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cuda-linux

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cpu

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-lite

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

FAkka.Mathnet.Symbolic.withTensorSupported

Package Description

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last Updated
1.0.7 6,265 3/26/2022
1.0.7-preview2044360861 517 3/26/2022
1.0.7-preview1873603133 568 2/21/2022
1.0.7-preview1872895008 556 2/20/2022
1.0.7-preview1872194677 543 2/20/2022
1.0.7-preview1867437105 525 2/19/2022
1.0.7-preview1838897476 547 2/14/2022
1.0.7-preview1838869913 543 2/14/2022
1.0.6 6,766 2/9/2022
1.0.6-preview1838805210 535 2/14/2022
1.0.6-preview1838790927 618 2/14/2022
1.0.6-preview1838781533 540 2/14/2022
1.0.6-preview1838761310 548 2/14/2022
1.0.6-preview1838574327 602 2/14/2022
1.0.6-preview1838238393 553 2/13/2022
1.0.6-preview1837967313 592 2/13/2022
1.0.6-preview1837932839 393 2/13/2022
1.0.6-preview1837857091 374 2/13/2022
1.0.5 3,728 2/9/2022
1.0.4 3,882 2/8/2022
1.0.3 4,984 2/8/2022
1.0.2 4,107 2/8/2022
1.0.1 4,940 11/8/2021
1.0.0-preview-987646120 711 6/30/2021
1.0.0-preview-964642900 681 6/23/2021
1.0.0-preview-964597118 517 6/23/2021
1.0.0-preview-964532207 578 6/23/2021
1.0.0-preview-964414624 576 6/23/2021
1.0.0-preview-962665709 445 6/23/2021
1.0.0-preview-961120541 495 6/22/2021
1.0.0-preview-958984202 525 6/22/2021
1.0.0-preview-783523654 670 4/25/2021
1.0.0-preview-783503343 569 4/25/2021
1.0.0-preview-783410550 602 4/25/2021
1.0.0-preview-781810429 545 4/25/2021
1.0.0-preview-775752139 634 4/22/2021
1.0.0-preview-774228953 597 4/22/2021
1.0.0-preview-769092916 596 4/21/2021
1.0.0-preview-768013090 571 4/20/2021
1.0.0-preview-762002995 556 4/19/2021
1.0.0-preview-761040762 608 4/18/2021
1.0.0-preview-761018834 627 4/18/2021
1.0.0-preview-756065403 543 4/16/2021
1.0.0-preview-755638011 551 4/16/2021
1.0.0-preview-752421465 583 4/15/2021
1.0.0-preview-748176085 570 4/14/2021
1.0.0-preview-746203897 545 4/13/2021
1.0.0-preview-746138300 570 4/13/2021
1.0.0-preview-745205599 530 4/13/2021
1.0.0-preview-739671157 564 4/12/2021
1.0.0-preview-712483117 579 4/2/2021
1.0.0-preview-699281085 513 3/29/2021
1.0.0-preview-699125312 571 3/29/2021
1.0.0-preview-698458610 615 3/29/2021
1.0.0-preview-697743517 638 3/29/2021
1.0.0-preview-697665469 573 3/29/2021
1.0.0-preview-690194555 567 3/26/2021
1.0.0-preview-688124591 541 3/25/2021
1.0.0-preview-687886352 545 3/25/2021
1.0.0-preview-681551353 578 3/24/2021
1.0.0-preview-681104545 590 3/23/2021
1.0.0-preview-680643606 625 3/23/2021
1.0.0-preview-679950457 575 3/23/2021
1.0.0-preview-669022451 566 3/19/2021
1.0.0-preview-643151273 476 3/11/2021
1.0.0-preview-633398743 549 3/8/2021
1.0.0-preview-633348953 566 3/8/2021
1.0.0-preview-621803110 615 3/4/2021
1.0.0-preview-611561611 601 3/1/2021
1.0.0-preview-611172961 517 3/1/2021
1.0.0-preview-593196134 494 2/23/2021
1.0.0-preview-589424126 541 2/22/2021
1.0.0-preview-589402583 576 2/22/2021
1.0.0-preview-586837684 526 2/21/2021
1.0.0-preview-586440747 574 2/21/2021
1.0.0-preview-498549439 599 1/20/2021
1.0.0-preview-485581354 613 1/14/2021
1.0.0-preview-392545720 676 11/30/2020
1.0.0-preview-392233243 646 11/30/2020
1.0.0-preview-392187079 687 11/30/2020
1.0.0-preview-390203270 605 11/29/2020
1.0.0-preview-387146713 704 11/27/2020
1.0.0-preview-386097798 742 11/26/2020
1.0.0-preview-385867359 745 11/26/2020
1.0.0-preview-385523380 614 11/26/2020
1.0.0-preview-384128234 723 11/25/2020
1.0.0-preview-374537774 700 11/20/2020
1.0.0-preview-374468367 618 11/20/2020
1.0.0-preview-368681212 660 11/17/2020
1.0.0-preview-368659044 747 11/17/2020
1.0.0-preview-364746088 753 11/15/2020
1.0.0-preview-364706087 707 11/15/2020
1.0.0-preview-363372268 626 11/14/2020
1.0.0-preview-362038354 662 11/13/2020
1.0.0-preview-362004577 667 11/13/2020
1.0.0-preview-361488593 609 11/13/2020
1.0.0-preview-360710530 652 11/13/2020
1.0.0-preview-359756455 662 11/12/2020
1.0.0-preview-358333968 691 11/11/2020
1.0.0-preview-358184921 691 11/11/2020
1.0.0-preview-358174946 672 11/11/2020
1.0.0-preview-349704450 765 11/6/2020
1.0.0-preview-349564717 740 11/6/2020
1.0.0-preview-343634015 747 11/3/2020
1.0.0-preview-343610434 665 11/3/2020
1.0.0-preview-328097867 949 10/26/2020
1.0.0-preview-322875134 708 10/22/2020
1.0.0-preview-315311536 651 10/19/2020
1.0.0-preview-309180753 675 10/15/2020
1.0.0-preview-309013019 745 10/15/2020
1.0.0-preview-308920132 660 10/15/2020
1.0.0-preview-308837132 696 10/15/2020
1.0.0-preview-308751690 700 10/15/2020
1.0.0-preview-308593840 700 10/15/2020
1.0.0-preview-299173506 751 10/10/2020
1.0.0-preview-292259854 773 10/6/2020
1.0.0-preview-291985511 729 10/6/2020
1.0.0-preview-291903007 690 10/6/2020
1.0.0-preview-291722399 753 10/6/2020
1.0.0-preview-284981464 673 10/2/2020
1.0.0-preview-284595614 654 10/2/2020
1.0.0-preview-280886714 740 9/30/2020
1.0.0-preview-278989673 684 9/29/2020
1.0.0-preview-277686264 674 9/29/2020
1.0.0-preview-277653295 694 9/29/2020
1.0.0-preview-275730148 747 9/28/2020
1.0.0-preview-275727262 710 9/28/2020
1.0.0-preview-267667710 744 9/22/2020
1.0.0-preview-263264614 758 9/20/2020
1.0.0-preview-263250971 804 9/20/2020
1.0.0-preview-262623253 654 9/19/2020
1.0.0-preview-258339834 691 9/16/2020
1.0.0-preview-258210544 727 9/16/2020
1.0.0-preview-258177528 777 9/16/2020
1.0.0-preview-258119380 770 9/16/2020
1.0.0-preview-256594931 733 9/16/2020
1.0.0-preview-256435175 780 9/15/2020
1.0.0-preview-253816091 673 9/14/2020
1.0.0-preview-253197654 710 9/14/2020
1.0.0-preview-247523274 663 9/10/2020
1.0.0-preview-247118168 726 9/9/2020
1.0.0-preview-246444372 788 9/9/2020
1.0.0-preview-246434361 761 9/9/2020
1.0.0-preview-246402060 640 9/9/2020
1.0.0-preview-245105781 678 9/8/2020
1.0.0-preview-244918410 725 9/8/2020
1.0.0-preview-243478925 660 9/7/2020
1.0.0-preview-243471084 696 9/7/2020
1.0.0-preview-243323135 788 9/7/2020
1.0.0-preview-1413494063 601 11/2/2021
1.0.0-preview-1405354284 561 10/31/2021
1.0.0-preview-1338129467 585 10/13/2021
1.0.0-preview-1327345305 684 10/11/2021
1.0.0-preview-1325686991 532 10/10/2021
1.0.0-preview-1324682939 693 10/10/2021
1.0.0-preview-1239345497 595 9/15/2021
1.0.0-preview-1227879651 605 9/13/2021
1.0.0-preview-1227810778 612 9/13/2021
1.0.0-preview-1222163389 594 9/10/2021
1.0.0-preview-1177844564 617 8/28/2021
1.0.0-preview-1176119659 520 8/28/2021
1.0.0-preview-1176116073 533 8/28/2021
1.0.0-preview-1176112166 505 8/28/2021
1.0.0-preview-1172193368 533 8/26/2021
1.0.0-preview-1168287221 521 8/25/2021
1.0.0-preview-1147185155 603 8/19/2021
1.0.0-preview-1133286135 635 8/15/2021
1.0.0-preview-1118120224 630 8/10/2021
1.0.0-preview-1111420036 546 8/9/2021
1.0.0-preview-1111385512 471 8/9/2021
1.0.0-preview-1111166736 525 8/9/2021
1.0.0-preview-1088380884 569 8/1/2021
1.0.0-preview-1088311063 569 8/1/2021
1.0.0-preview-1088021240 634 8/1/2021
1.0.0-preview-1083990424 584 7/31/2021
1.0.0-preview-1080710191 551 7/30/2021
1.0.0-preview-1080701269 584 7/30/2021
1.0.0-preview-1079028054 585 7/29/2021
1.0.0-preview-1079000079 589 7/29/2021
1.0.0-preview-1078977564 647 7/29/2021
1.0.0-preview-1069218438 489 7/26/2021
1.0.0-preview-1065692127 631 7/26/2021
1.0.0-preview-1054554829 549 7/22/2021
1.0.0-preview-1054460177 612 7/22/2021
1.0.0-preview-1044919966 575 7/19/2021
1.0.0-preview-1043697034 499 7/19/2021
1.0.0-preview-1001211231 579 7/5/2021
1.0.0-preview-1001204475 556 7/5/2021
0.9.5-preview-243240046 799 9/7/2020
0.9.5-preview-243219862 823 9/7/2020