DiffSharp.Backends.Torch 1.0.0-preview-1168287221

This is a prerelease version of DiffSharp.Backends.Torch.
There is a newer version of this package available.
See the version list below for details.
dotnet add package DiffSharp.Backends.Torch --version 1.0.0-preview-1168287221
                    
NuGet\Install-Package DiffSharp.Backends.Torch -Version 1.0.0-preview-1168287221
                    
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-1168287221" />
                    
For projects that support PackageReference, copy this XML node into the project file to reference the package.
<PackageVersion Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-1168287221" />
                    
Directory.Packages.props
<PackageReference Include="DiffSharp.Backends.Torch" />
                    
Project file
For projects that support Central Package Management (CPM), copy this XML node into the solution Directory.Packages.props file to version the package.
paket add DiffSharp.Backends.Torch --version 1.0.0-preview-1168287221
                    
#r "nuget: DiffSharp.Backends.Torch, 1.0.0-preview-1168287221"
                    
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
#addin nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-1168287221&prerelease
                    
Install as a Cake Addin
#tool nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-1168287221&prerelease
                    
Install as a Cake Tool

Package Description

Product Compatible and additional computed target framework versions.
.NET net5.0 is compatible.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed.  net10.0 was computed.  net10.0-android was computed.  net10.0-browser was computed.  net10.0-ios was computed.  net10.0-maccatalyst was computed.  net10.0-macos was computed.  net10.0-tvos was computed.  net10.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (5)

Showing the top 5 NuGet packages that depend on DiffSharp.Backends.Torch:

Package Downloads
DiffSharp-cuda-windows

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cuda-linux

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cpu

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-lite

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

FAkka.Mathnet.Symbolic.withTensorSupported

Package Description

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last Updated
1.0.7 6,076 3/26/2022
1.0.7-preview2044360861 451 3/26/2022
1.0.7-preview1873603133 491 2/21/2022
1.0.7-preview1872895008 478 2/20/2022
1.0.7-preview1872194677 469 2/20/2022
1.0.7-preview1867437105 448 2/19/2022
1.0.7-preview1838897476 490 2/14/2022
1.0.7-preview1838869913 459 2/14/2022
1.0.6 6,710 2/9/2022
1.0.6-preview1838805210 471 2/14/2022
1.0.6-preview1838790927 548 2/14/2022
1.0.6-preview1838781533 495 2/14/2022
1.0.6-preview1838761310 457 2/14/2022
1.0.6-preview1838574327 535 2/14/2022
1.0.6-preview1838238393 490 2/13/2022
1.0.6-preview1837967313 513 2/13/2022
1.0.6-preview1837932839 336 2/13/2022
1.0.6-preview1837857091 336 2/13/2022
1.0.5 3,672 2/9/2022
1.0.4 3,823 2/8/2022
1.0.3 4,926 2/8/2022
1.0.2 4,042 2/8/2022
1.0.1 4,891 11/8/2021
1.0.0-preview-987646120 644 6/30/2021
1.0.0-preview-964642900 607 6/23/2021
1.0.0-preview-964597118 469 6/23/2021
1.0.0-preview-964532207 528 6/23/2021
1.0.0-preview-964414624 535 6/23/2021
1.0.0-preview-962665709 390 6/23/2021
1.0.0-preview-961120541 437 6/22/2021
1.0.0-preview-958984202 472 6/22/2021
1.0.0-preview-783523654 614 4/25/2021
1.0.0-preview-783503343 514 4/25/2021
1.0.0-preview-783410550 541 4/25/2021
1.0.0-preview-781810429 481 4/25/2021
1.0.0-preview-775752139 574 4/22/2021
1.0.0-preview-774228953 529 4/22/2021
1.0.0-preview-769092916 540 4/21/2021
1.0.0-preview-768013090 514 4/20/2021
1.0.0-preview-762002995 488 4/19/2021
1.0.0-preview-761040762 550 4/18/2021
1.0.0-preview-761018834 577 4/18/2021
1.0.0-preview-756065403 490 4/16/2021
1.0.0-preview-755638011 490 4/16/2021
1.0.0-preview-752421465 518 4/15/2021
1.0.0-preview-748176085 505 4/14/2021
1.0.0-preview-746203897 493 4/13/2021
1.0.0-preview-746138300 523 4/13/2021
1.0.0-preview-745205599 467 4/13/2021
1.0.0-preview-739671157 501 4/12/2021
1.0.0-preview-712483117 509 4/2/2021
1.0.0-preview-699281085 449 3/29/2021
1.0.0-preview-699125312 504 3/29/2021
1.0.0-preview-698458610 549 3/29/2021
1.0.0-preview-697743517 571 3/29/2021
1.0.0-preview-697665469 508 3/29/2021
1.0.0-preview-690194555 512 3/26/2021
1.0.0-preview-688124591 479 3/25/2021
1.0.0-preview-687886352 485 3/25/2021
1.0.0-preview-681551353 519 3/24/2021
1.0.0-preview-681104545 529 3/23/2021
1.0.0-preview-680643606 555 3/23/2021
1.0.0-preview-679950457 507 3/23/2021
1.0.0-preview-669022451 514 3/19/2021
1.0.0-preview-643151273 415 3/11/2021
1.0.0-preview-633398743 492 3/8/2021
1.0.0-preview-633348953 494 3/8/2021
1.0.0-preview-621803110 556 3/4/2021
1.0.0-preview-611561611 538 3/1/2021
1.0.0-preview-611172961 458 3/1/2021
1.0.0-preview-593196134 438 2/23/2021
1.0.0-preview-589424126 491 2/22/2021
1.0.0-preview-589402583 521 2/22/2021
1.0.0-preview-586837684 461 2/21/2021
1.0.0-preview-586440747 513 2/21/2021
1.0.0-preview-498549439 534 1/20/2021
1.0.0-preview-485581354 531 1/14/2021
1.0.0-preview-392545720 613 11/30/2020
1.0.0-preview-392233243 572 11/30/2020
1.0.0-preview-392187079 617 11/30/2020
1.0.0-preview-390203270 557 11/29/2020
1.0.0-preview-387146713 636 11/27/2020
1.0.0-preview-386097798 670 11/26/2020
1.0.0-preview-385867359 675 11/26/2020
1.0.0-preview-385523380 562 11/26/2020
1.0.0-preview-384128234 656 11/25/2020
1.0.0-preview-374537774 619 11/20/2020
1.0.0-preview-374468367 549 11/20/2020
1.0.0-preview-368681212 596 11/17/2020
1.0.0-preview-368659044 673 11/17/2020
1.0.0-preview-364746088 678 11/15/2020
1.0.0-preview-364706087 638 11/15/2020
1.0.0-preview-363372268 570 11/14/2020
1.0.0-preview-362038354 588 11/13/2020
1.0.0-preview-362004577 602 11/13/2020
1.0.0-preview-361488593 539 11/13/2020
1.0.0-preview-360710530 598 11/13/2020
1.0.0-preview-359756455 605 11/12/2020
1.0.0-preview-358333968 623 11/11/2020
1.0.0-preview-358184921 634 11/11/2020
1.0.0-preview-358174946 604 11/11/2020
1.0.0-preview-349704450 695 11/6/2020
1.0.0-preview-349564717 678 11/6/2020
1.0.0-preview-343634015 680 11/3/2020
1.0.0-preview-343610434 612 11/3/2020
1.0.0-preview-328097867 888 10/26/2020
1.0.0-preview-322875134 632 10/22/2020
1.0.0-preview-315311536 577 10/19/2020
1.0.0-preview-309180753 611 10/15/2020
1.0.0-preview-309013019 668 10/15/2020
1.0.0-preview-308920132 585 10/15/2020
1.0.0-preview-308837132 626 10/15/2020
1.0.0-preview-308751690 628 10/15/2020
1.0.0-preview-308593840 633 10/15/2020
1.0.0-preview-299173506 710 10/10/2020
1.0.0-preview-292259854 704 10/6/2020
1.0.0-preview-291985511 661 10/6/2020
1.0.0-preview-291903007 612 10/6/2020
1.0.0-preview-291722399 675 10/6/2020
1.0.0-preview-284981464 626 10/2/2020
1.0.0-preview-284595614 593 10/2/2020
1.0.0-preview-280886714 673 9/30/2020
1.0.0-preview-278989673 622 9/29/2020
1.0.0-preview-277686264 601 9/29/2020
1.0.0-preview-277653295 627 9/29/2020
1.0.0-preview-275730148 684 9/28/2020
1.0.0-preview-275727262 656 9/28/2020
1.0.0-preview-267667710 685 9/22/2020
1.0.0-preview-263264614 716 9/20/2020
1.0.0-preview-263250971 750 9/20/2020
1.0.0-preview-262623253 602 9/19/2020
1.0.0-preview-258339834 633 9/16/2020
1.0.0-preview-258210544 674 9/16/2020
1.0.0-preview-258177528 716 9/16/2020
1.0.0-preview-258119380 708 9/16/2020
1.0.0-preview-256594931 667 9/16/2020
1.0.0-preview-256435175 717 9/15/2020
1.0.0-preview-253816091 620 9/14/2020
1.0.0-preview-253197654 642 9/14/2020
1.0.0-preview-247523274 595 9/10/2020
1.0.0-preview-247118168 672 9/9/2020
1.0.0-preview-246444372 724 9/9/2020
1.0.0-preview-246434361 703 9/9/2020
1.0.0-preview-246402060 574 9/9/2020
1.0.0-preview-245105781 601 9/8/2020
1.0.0-preview-244918410 655 9/8/2020
1.0.0-preview-243478925 605 9/7/2020
1.0.0-preview-243471084 619 9/7/2020
1.0.0-preview-243323135 729 9/7/2020
1.0.0-preview-1413494063 537 11/2/2021
1.0.0-preview-1405354284 492 10/31/2021
1.0.0-preview-1338129467 533 10/13/2021
1.0.0-preview-1327345305 631 10/11/2021
1.0.0-preview-1325686991 481 10/10/2021
1.0.0-preview-1324682939 634 10/10/2021
1.0.0-preview-1239345497 551 9/15/2021
1.0.0-preview-1227879651 544 9/13/2021
1.0.0-preview-1227810778 546 9/13/2021
1.0.0-preview-1222163389 527 9/10/2021
1.0.0-preview-1177844564 554 8/28/2021
1.0.0-preview-1176119659 466 8/28/2021
1.0.0-preview-1176116073 486 8/28/2021
1.0.0-preview-1176112166 447 8/28/2021
1.0.0-preview-1172193368 476 8/26/2021
1.0.0-preview-1168287221 465 8/25/2021
1.0.0-preview-1147185155 546 8/19/2021
1.0.0-preview-1133286135 587 8/15/2021
1.0.0-preview-1118120224 568 8/10/2021
1.0.0-preview-1111420036 478 8/9/2021
1.0.0-preview-1111385512 414 8/9/2021
1.0.0-preview-1111166736 478 8/9/2021
1.0.0-preview-1088380884 500 8/1/2021
1.0.0-preview-1088311063 505 8/1/2021
1.0.0-preview-1088021240 577 8/1/2021
1.0.0-preview-1083990424 527 7/31/2021
1.0.0-preview-1080710191 493 7/30/2021
1.0.0-preview-1080701269 520 7/30/2021
1.0.0-preview-1079028054 527 7/29/2021
1.0.0-preview-1079000079 518 7/29/2021
1.0.0-preview-1078977564 577 7/29/2021
1.0.0-preview-1069218438 435 7/26/2021
1.0.0-preview-1065692127 582 7/26/2021
1.0.0-preview-1054554829 482 7/22/2021
1.0.0-preview-1054460177 542 7/22/2021
1.0.0-preview-1044919966 502 7/19/2021
1.0.0-preview-1043697034 436 7/19/2021
1.0.0-preview-1001211231 529 7/5/2021
1.0.0-preview-1001204475 499 7/5/2021
0.9.5-preview-243240046 735 9/7/2020
0.9.5-preview-243219862 759 9/7/2020