DiffSharp.Backends.Torch 1.0.0-preview-681104545

This is a prerelease version of DiffSharp.Backends.Torch.
There is a newer version of this package available.
See the version list below for details.
dotnet add package DiffSharp.Backends.Torch --version 1.0.0-preview-681104545
                    
NuGet\Install-Package DiffSharp.Backends.Torch -Version 1.0.0-preview-681104545
                    
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-681104545" />
                    
For projects that support PackageReference, copy this XML node into the project file to reference the package.
<PackageVersion Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-681104545" />
                    
Directory.Packages.props
<PackageReference Include="DiffSharp.Backends.Torch" />
                    
Project file
For projects that support Central Package Management (CPM), copy this XML node into the solution Directory.Packages.props file to version the package.
paket add DiffSharp.Backends.Torch --version 1.0.0-preview-681104545
                    
#r "nuget: DiffSharp.Backends.Torch, 1.0.0-preview-681104545"
                    
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
#:package DiffSharp.Backends.Torch@1.0.0-preview-681104545
                    
#:package directive can be used in C# file-based apps starting in .NET 10 preview 4. Copy this into a .cs file before any lines of code to reference the package.
#addin nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-681104545&prerelease
                    
Install as a Cake Addin
#tool nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-681104545&prerelease
                    
Install as a Cake Tool

Package Description

Product Compatible and additional computed target framework versions.
.NET net5.0 is compatible.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed.  net10.0 was computed.  net10.0-android was computed.  net10.0-browser was computed.  net10.0-ios was computed.  net10.0-maccatalyst was computed.  net10.0-macos was computed.  net10.0-tvos was computed.  net10.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (5)

Showing the top 5 NuGet packages that depend on DiffSharp.Backends.Torch:

Package Downloads
DiffSharp-cuda-windows

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cuda-linux

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cpu

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-lite

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

FAkka.Mathnet.Symbolic.withTensorSupported

Package Description

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last Updated
1.0.7 6,146 3/26/2022
1.0.7-preview2044360861 474 3/26/2022
1.0.7-preview1873603133 519 2/21/2022
1.0.7-preview1872895008 508 2/20/2022
1.0.7-preview1872194677 496 2/20/2022
1.0.7-preview1867437105 472 2/19/2022
1.0.7-preview1838897476 515 2/14/2022
1.0.7-preview1838869913 489 2/14/2022
1.0.6 6,737 2/9/2022
1.0.6-preview1838805210 498 2/14/2022
1.0.6-preview1838790927 573 2/14/2022
1.0.6-preview1838781533 522 2/14/2022
1.0.6-preview1838761310 482 2/14/2022
1.0.6-preview1838574327 564 2/14/2022
1.0.6-preview1838238393 518 2/13/2022
1.0.6-preview1837967313 544 2/13/2022
1.0.6-preview1837932839 365 2/13/2022
1.0.6-preview1837857091 360 2/13/2022
1.0.5 3,702 2/9/2022
1.0.4 3,851 2/8/2022
1.0.3 4,954 2/8/2022
1.0.2 4,077 2/8/2022
1.0.1 4,919 11/8/2021
1.0.0-preview-987646120 676 6/30/2021
1.0.0-preview-964642900 632 6/23/2021
1.0.0-preview-964597118 493 6/23/2021
1.0.0-preview-964532207 555 6/23/2021
1.0.0-preview-964414624 562 6/23/2021
1.0.0-preview-962665709 419 6/23/2021
1.0.0-preview-961120541 468 6/22/2021
1.0.0-preview-958984202 497 6/22/2021
1.0.0-preview-783523654 641 4/25/2021
1.0.0-preview-783503343 538 4/25/2021
1.0.0-preview-783410550 571 4/25/2021
1.0.0-preview-781810429 514 4/25/2021
1.0.0-preview-775752139 600 4/22/2021
1.0.0-preview-774228953 555 4/22/2021
1.0.0-preview-769092916 568 4/21/2021
1.0.0-preview-768013090 539 4/20/2021
1.0.0-preview-762002995 516 4/19/2021
1.0.0-preview-761040762 575 4/18/2021
1.0.0-preview-761018834 605 4/18/2021
1.0.0-preview-756065403 516 4/16/2021
1.0.0-preview-755638011 515 4/16/2021
1.0.0-preview-752421465 547 4/15/2021
1.0.0-preview-748176085 531 4/14/2021
1.0.0-preview-746203897 518 4/13/2021
1.0.0-preview-746138300 551 4/13/2021
1.0.0-preview-745205599 496 4/13/2021
1.0.0-preview-739671157 526 4/12/2021
1.0.0-preview-712483117 537 4/2/2021
1.0.0-preview-699281085 474 3/29/2021
1.0.0-preview-699125312 529 3/29/2021
1.0.0-preview-698458610 577 3/29/2021
1.0.0-preview-697743517 597 3/29/2021
1.0.0-preview-697665469 533 3/29/2021
1.0.0-preview-690194555 539 3/26/2021
1.0.0-preview-688124591 506 3/25/2021
1.0.0-preview-687886352 508 3/25/2021
1.0.0-preview-681551353 547 3/24/2021
1.0.0-preview-681104545 554 3/23/2021
1.0.0-preview-680643606 581 3/23/2021
1.0.0-preview-679950457 533 3/23/2021
1.0.0-preview-669022451 540 3/19/2021
1.0.0-preview-643151273 441 3/11/2021
1.0.0-preview-633398743 519 3/8/2021
1.0.0-preview-633348953 522 3/8/2021
1.0.0-preview-621803110 584 3/4/2021
1.0.0-preview-611561611 567 3/1/2021
1.0.0-preview-611172961 489 3/1/2021
1.0.0-preview-593196134 463 2/23/2021
1.0.0-preview-589424126 516 2/22/2021
1.0.0-preview-589402583 545 2/22/2021
1.0.0-preview-586837684 489 2/21/2021
1.0.0-preview-586440747 538 2/21/2021
1.0.0-preview-498549439 562 1/20/2021
1.0.0-preview-485581354 579 1/14/2021
1.0.0-preview-392545720 642 11/30/2020
1.0.0-preview-392233243 605 11/30/2020
1.0.0-preview-392187079 645 11/30/2020
1.0.0-preview-390203270 583 11/29/2020
1.0.0-preview-387146713 665 11/27/2020
1.0.0-preview-386097798 701 11/26/2020
1.0.0-preview-385867359 705 11/26/2020
1.0.0-preview-385523380 587 11/26/2020
1.0.0-preview-384128234 684 11/25/2020
1.0.0-preview-374537774 651 11/20/2020
1.0.0-preview-374468367 579 11/20/2020
1.0.0-preview-368681212 625 11/17/2020
1.0.0-preview-368659044 700 11/17/2020
1.0.0-preview-364746088 720 11/15/2020
1.0.0-preview-364706087 667 11/15/2020
1.0.0-preview-363372268 596 11/14/2020
1.0.0-preview-362038354 622 11/13/2020
1.0.0-preview-362004577 632 11/13/2020
1.0.0-preview-361488593 570 11/13/2020
1.0.0-preview-360710530 625 11/13/2020
1.0.0-preview-359756455 630 11/12/2020
1.0.0-preview-358333968 652 11/11/2020
1.0.0-preview-358184921 662 11/11/2020
1.0.0-preview-358174946 634 11/11/2020
1.0.0-preview-349704450 728 11/6/2020
1.0.0-preview-349564717 708 11/6/2020
1.0.0-preview-343634015 708 11/3/2020
1.0.0-preview-343610434 640 11/3/2020
1.0.0-preview-328097867 920 10/26/2020
1.0.0-preview-322875134 666 10/22/2020
1.0.0-preview-315311536 608 10/19/2020
1.0.0-preview-309180753 644 10/15/2020
1.0.0-preview-309013019 701 10/15/2020
1.0.0-preview-308920132 619 10/15/2020
1.0.0-preview-308837132 653 10/15/2020
1.0.0-preview-308751690 657 10/15/2020
1.0.0-preview-308593840 665 10/15/2020
1.0.0-preview-299173506 738 10/10/2020
1.0.0-preview-292259854 736 10/6/2020
1.0.0-preview-291985511 690 10/6/2020
1.0.0-preview-291903007 641 10/6/2020
1.0.0-preview-291722399 711 10/6/2020
1.0.0-preview-284981464 652 10/2/2020
1.0.0-preview-284595614 623 10/2/2020
1.0.0-preview-280886714 703 9/30/2020
1.0.0-preview-278989673 651 9/29/2020
1.0.0-preview-277686264 632 9/29/2020
1.0.0-preview-277653295 657 9/29/2020
1.0.0-preview-275730148 717 9/28/2020
1.0.0-preview-275727262 683 9/28/2020
1.0.0-preview-267667710 713 9/22/2020
1.0.0-preview-263264614 744 9/20/2020
1.0.0-preview-263250971 777 9/20/2020
1.0.0-preview-262623253 632 9/19/2020
1.0.0-preview-258339834 660 9/16/2020
1.0.0-preview-258210544 701 9/16/2020
1.0.0-preview-258177528 746 9/16/2020
1.0.0-preview-258119380 739 9/16/2020
1.0.0-preview-256594931 700 9/16/2020
1.0.0-preview-256435175 746 9/15/2020
1.0.0-preview-253816091 651 9/14/2020
1.0.0-preview-253197654 673 9/14/2020
1.0.0-preview-247523274 625 9/10/2020
1.0.0-preview-247118168 697 9/9/2020
1.0.0-preview-246444372 756 9/9/2020
1.0.0-preview-246434361 730 9/9/2020
1.0.0-preview-246402060 604 9/9/2020
1.0.0-preview-245105781 634 9/8/2020
1.0.0-preview-244918410 688 9/8/2020
1.0.0-preview-243478925 631 9/7/2020
1.0.0-preview-243471084 648 9/7/2020
1.0.0-preview-243323135 758 9/7/2020
1.0.0-preview-1413494063 567 11/2/2021
1.0.0-preview-1405354284 520 10/31/2021
1.0.0-preview-1338129467 564 10/13/2021
1.0.0-preview-1327345305 658 10/11/2021
1.0.0-preview-1325686991 507 10/10/2021
1.0.0-preview-1324682939 663 10/10/2021
1.0.0-preview-1239345497 576 9/15/2021
1.0.0-preview-1227879651 572 9/13/2021
1.0.0-preview-1227810778 573 9/13/2021
1.0.0-preview-1222163389 558 9/10/2021
1.0.0-preview-1177844564 585 8/28/2021
1.0.0-preview-1176119659 491 8/28/2021
1.0.0-preview-1176116073 513 8/28/2021
1.0.0-preview-1176112166 475 8/28/2021
1.0.0-preview-1172193368 505 8/26/2021
1.0.0-preview-1168287221 491 8/25/2021
1.0.0-preview-1147185155 575 8/19/2021
1.0.0-preview-1133286135 614 8/15/2021
1.0.0-preview-1118120224 593 8/10/2021
1.0.0-preview-1111420036 508 8/9/2021
1.0.0-preview-1111385512 437 8/9/2021
1.0.0-preview-1111166736 503 8/9/2021
1.0.0-preview-1088380884 531 8/1/2021
1.0.0-preview-1088311063 535 8/1/2021
1.0.0-preview-1088021240 608 8/1/2021
1.0.0-preview-1083990424 556 7/31/2021
1.0.0-preview-1080710191 523 7/30/2021
1.0.0-preview-1080701269 548 7/30/2021
1.0.0-preview-1079028054 554 7/29/2021
1.0.0-preview-1079000079 550 7/29/2021
1.0.0-preview-1078977564 607 7/29/2021
1.0.0-preview-1069218438 463 7/26/2021
1.0.0-preview-1065692127 609 7/26/2021
1.0.0-preview-1054554829 509 7/22/2021
1.0.0-preview-1054460177 571 7/22/2021
1.0.0-preview-1044919966 530 7/19/2021
1.0.0-preview-1043697034 464 7/19/2021
1.0.0-preview-1001211231 557 7/5/2021
1.0.0-preview-1001204475 526 7/5/2021
0.9.5-preview-243240046 765 9/7/2020
0.9.5-preview-243219862 789 9/7/2020