DiffSharp.Backends.Torch 1.0.0-preview-1413494063

This is a prerelease version of DiffSharp.Backends.Torch.
There is a newer version of this package available.
See the version list below for details.
dotnet add package DiffSharp.Backends.Torch --version 1.0.0-preview-1413494063
                    
NuGet\Install-Package DiffSharp.Backends.Torch -Version 1.0.0-preview-1413494063
                    
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-1413494063" />
                    
For projects that support PackageReference, copy this XML node into the project file to reference the package.
<PackageVersion Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-1413494063" />
                    
Directory.Packages.props
<PackageReference Include="DiffSharp.Backends.Torch" />
                    
Project file
For projects that support Central Package Management (CPM), copy this XML node into the solution Directory.Packages.props file to version the package.
paket add DiffSharp.Backends.Torch --version 1.0.0-preview-1413494063
                    
#r "nuget: DiffSharp.Backends.Torch, 1.0.0-preview-1413494063"
                    
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
#:package DiffSharp.Backends.Torch@1.0.0-preview-1413494063
                    
#:package directive can be used in C# file-based apps starting in .NET 10 preview 4. Copy this into a .cs file before any lines of code to reference the package.
#addin nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-1413494063&prerelease
                    
Install as a Cake Addin
#tool nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-1413494063&prerelease
                    
Install as a Cake Tool

Package Description

Product Compatible and additional computed target framework versions.
.NET net5.0 is compatible.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed.  net10.0 was computed.  net10.0-android was computed.  net10.0-browser was computed.  net10.0-ios was computed.  net10.0-maccatalyst was computed.  net10.0-macos was computed.  net10.0-tvos was computed.  net10.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (5)

Showing the top 5 NuGet packages that depend on DiffSharp.Backends.Torch:

Package Downloads
DiffSharp-cuda-windows

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cuda-linux

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cpu

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-lite

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

FAkka.Mathnet.Symbolic.withTensorSupported

Package Description

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last Updated
1.0.7 6,295 3/26/2022
1.0.7-preview2044360861 539 3/26/2022
1.0.7-preview1873603133 601 2/21/2022
1.0.7-preview1872895008 584 2/20/2022
1.0.7-preview1872194677 582 2/20/2022
1.0.7-preview1867437105 553 2/19/2022
1.0.7-preview1838897476 579 2/14/2022
1.0.7-preview1838869913 563 2/14/2022
1.0.6 6,793 2/9/2022
1.0.6-preview1838805210 561 2/14/2022
1.0.6-preview1838790927 643 2/14/2022
1.0.6-preview1838781533 567 2/14/2022
1.0.6-preview1838761310 582 2/14/2022
1.0.6-preview1838574327 632 2/14/2022
1.0.6-preview1838238393 586 2/13/2022
1.0.6-preview1837967313 610 2/13/2022
1.0.6-preview1837932839 413 2/13/2022
1.0.6-preview1837857091 405 2/13/2022
1.0.5 3,744 2/9/2022
1.0.4 3,903 2/8/2022
1.0.3 5,011 2/8/2022
1.0.2 4,126 2/8/2022
1.0.1 4,979 11/8/2021
1.0.0-preview-987646120 737 6/30/2021
1.0.0-preview-964642900 710 6/23/2021
1.0.0-preview-964597118 531 6/23/2021
1.0.0-preview-964532207 599 6/23/2021
1.0.0-preview-964414624 614 6/23/2021
1.0.0-preview-962665709 466 6/23/2021
1.0.0-preview-961120541 515 6/22/2021
1.0.0-preview-958984202 545 6/22/2021
1.0.0-preview-783523654 692 4/25/2021
1.0.0-preview-783503343 589 4/25/2021
1.0.0-preview-783410550 628 4/25/2021
1.0.0-preview-781810429 584 4/25/2021
1.0.0-preview-775752139 672 4/22/2021
1.0.0-preview-774228953 620 4/22/2021
1.0.0-preview-769092916 613 4/21/2021
1.0.0-preview-768013090 584 4/20/2021
1.0.0-preview-762002995 583 4/19/2021
1.0.0-preview-761040762 643 4/18/2021
1.0.0-preview-761018834 652 4/18/2021
1.0.0-preview-756065403 552 4/16/2021
1.0.0-preview-755638011 573 4/16/2021
1.0.0-preview-752421465 601 4/15/2021
1.0.0-preview-748176085 593 4/14/2021
1.0.0-preview-746203897 571 4/13/2021
1.0.0-preview-746138300 604 4/13/2021
1.0.0-preview-745205599 562 4/13/2021
1.0.0-preview-739671157 585 4/12/2021
1.0.0-preview-712483117 589 4/2/2021
1.0.0-preview-699281085 533 3/29/2021
1.0.0-preview-699125312 602 3/29/2021
1.0.0-preview-698458610 650 3/29/2021
1.0.0-preview-697743517 667 3/29/2021
1.0.0-preview-697665469 584 3/29/2021
1.0.0-preview-690194555 594 3/26/2021
1.0.0-preview-688124591 562 3/25/2021
1.0.0-preview-687886352 565 3/25/2021
1.0.0-preview-681551353 600 3/24/2021
1.0.0-preview-681104545 615 3/23/2021
1.0.0-preview-680643606 655 3/23/2021
1.0.0-preview-679950457 604 3/23/2021
1.0.0-preview-669022451 604 3/19/2021
1.0.0-preview-643151273 498 3/11/2021
1.0.0-preview-633398743 569 3/8/2021
1.0.0-preview-633348953 595 3/8/2021
1.0.0-preview-621803110 643 3/4/2021
1.0.0-preview-611561611 628 3/1/2021
1.0.0-preview-611172961 544 3/1/2021
1.0.0-preview-593196134 521 2/23/2021
1.0.0-preview-589424126 575 2/22/2021
1.0.0-preview-589402583 603 2/22/2021
1.0.0-preview-586837684 550 2/21/2021
1.0.0-preview-586440747 596 2/21/2021
1.0.0-preview-498549439 612 1/20/2021
1.0.0-preview-485581354 635 1/14/2021
1.0.0-preview-392545720 697 11/30/2020
1.0.0-preview-392233243 666 11/30/2020
1.0.0-preview-392187079 719 11/30/2020
1.0.0-preview-390203270 647 11/29/2020
1.0.0-preview-387146713 726 11/27/2020
1.0.0-preview-386097798 771 11/26/2020
1.0.0-preview-385867359 768 11/26/2020
1.0.0-preview-385523380 660 11/26/2020
1.0.0-preview-384128234 754 11/25/2020
1.0.0-preview-374537774 733 11/20/2020
1.0.0-preview-374468367 633 11/20/2020
1.0.0-preview-368681212 672 11/17/2020
1.0.0-preview-368659044 761 11/17/2020
1.0.0-preview-364746088 789 11/15/2020
1.0.0-preview-364706087 729 11/15/2020
1.0.0-preview-363372268 650 11/14/2020
1.0.0-preview-362038354 682 11/13/2020
1.0.0-preview-362004577 688 11/13/2020
1.0.0-preview-361488593 641 11/13/2020
1.0.0-preview-360710530 682 11/13/2020
1.0.0-preview-359756455 686 11/12/2020
1.0.0-preview-358333968 724 11/11/2020
1.0.0-preview-358184921 727 11/11/2020
1.0.0-preview-358174946 694 11/11/2020
1.0.0-preview-349704450 787 11/6/2020
1.0.0-preview-349564717 764 11/6/2020
1.0.0-preview-343634015 770 11/3/2020
1.0.0-preview-343610434 688 11/3/2020
1.0.0-preview-328097867 979 10/26/2020
1.0.0-preview-322875134 730 10/22/2020
1.0.0-preview-315311536 674 10/19/2020
1.0.0-preview-309180753 704 10/15/2020
1.0.0-preview-309013019 757 10/15/2020
1.0.0-preview-308920132 672 10/15/2020
1.0.0-preview-308837132 717 10/15/2020
1.0.0-preview-308751690 711 10/15/2020
1.0.0-preview-308593840 705 10/15/2020
1.0.0-preview-299173506 785 10/10/2020
1.0.0-preview-292259854 795 10/6/2020
1.0.0-preview-291985511 748 10/6/2020
1.0.0-preview-291903007 719 10/6/2020
1.0.0-preview-291722399 764 10/6/2020
1.0.0-preview-284981464 703 10/2/2020
1.0.0-preview-284595614 677 10/2/2020
1.0.0-preview-280886714 762 9/30/2020
1.0.0-preview-278989673 706 9/29/2020
1.0.0-preview-277686264 697 9/29/2020
1.0.0-preview-277653295 697 9/29/2020
1.0.0-preview-275730148 779 9/28/2020
1.0.0-preview-275727262 730 9/28/2020
1.0.0-preview-267667710 779 9/22/2020
1.0.0-preview-263264614 791 9/20/2020
1.0.0-preview-263250971 805 9/20/2020
1.0.0-preview-262623253 683 9/19/2020
1.0.0-preview-258339834 711 9/16/2020
1.0.0-preview-258210544 757 9/16/2020
1.0.0-preview-258177528 800 9/16/2020
1.0.0-preview-258119380 780 9/16/2020
1.0.0-preview-256594931 752 9/16/2020
1.0.0-preview-256435175 810 9/15/2020
1.0.0-preview-253816091 711 9/14/2020
1.0.0-preview-253197654 739 9/14/2020
1.0.0-preview-247523274 687 9/10/2020
1.0.0-preview-247118168 762 9/9/2020
1.0.0-preview-246444372 800 9/9/2020
1.0.0-preview-246434361 774 9/9/2020
1.0.0-preview-246402060 673 9/9/2020
1.0.0-preview-245105781 694 9/8/2020
1.0.0-preview-244918410 767 9/8/2020
1.0.0-preview-243478925 690 9/7/2020
1.0.0-preview-243471084 718 9/7/2020
1.0.0-preview-243323135 823 9/7/2020
1.0.0-preview-1413494063 628 11/2/2021
1.0.0-preview-1405354284 586 10/31/2021
1.0.0-preview-1338129467 620 10/13/2021
1.0.0-preview-1327345305 714 10/11/2021
1.0.0-preview-1325686991 564 10/10/2021
1.0.0-preview-1324682939 713 10/10/2021
1.0.0-preview-1239345497 624 9/15/2021
1.0.0-preview-1227879651 631 9/13/2021
1.0.0-preview-1227810778 639 9/13/2021
1.0.0-preview-1222163389 613 9/10/2021
1.0.0-preview-1177844564 649 8/28/2021
1.0.0-preview-1176119659 561 8/28/2021
1.0.0-preview-1176116073 553 8/28/2021
1.0.0-preview-1176112166 540 8/28/2021
1.0.0-preview-1172193368 570 8/26/2021
1.0.0-preview-1168287221 542 8/25/2021
1.0.0-preview-1147185155 627 8/19/2021
1.0.0-preview-1133286135 667 8/15/2021
1.0.0-preview-1118120224 652 8/10/2021
1.0.0-preview-1111420036 554 8/9/2021
1.0.0-preview-1111385512 490 8/9/2021
1.0.0-preview-1111166736 545 8/9/2021
1.0.0-preview-1088380884 578 8/1/2021
1.0.0-preview-1088311063 596 8/1/2021
1.0.0-preview-1088021240 667 8/1/2021
1.0.0-preview-1083990424 597 7/31/2021
1.0.0-preview-1080710191 584 7/30/2021
1.0.0-preview-1080701269 611 7/30/2021
1.0.0-preview-1079028054 605 7/29/2021
1.0.0-preview-1079000079 610 7/29/2021
1.0.0-preview-1078977564 677 7/29/2021
1.0.0-preview-1069218438 522 7/26/2021
1.0.0-preview-1065692127 667 7/26/2021
1.0.0-preview-1054554829 576 7/22/2021
1.0.0-preview-1054460177 627 7/22/2021
1.0.0-preview-1044919966 598 7/19/2021
1.0.0-preview-1043697034 517 7/19/2021
1.0.0-preview-1001211231 604 7/5/2021
1.0.0-preview-1001204475 583 7/5/2021
0.9.5-preview-243240046 816 9/7/2020
0.9.5-preview-243219862 870 9/7/2020