DiffSharp.Backends.Torch 1.0.0-preview-1413494063

This is a prerelease version of DiffSharp.Backends.Torch.
There is a newer version of this package available.
See the version list below for details.
dotnet add package DiffSharp.Backends.Torch --version 1.0.0-preview-1413494063
                    
NuGet\Install-Package DiffSharp.Backends.Torch -Version 1.0.0-preview-1413494063
                    
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-1413494063" />
                    
For projects that support PackageReference, copy this XML node into the project file to reference the package.
<PackageVersion Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-1413494063" />
                    
Directory.Packages.props
<PackageReference Include="DiffSharp.Backends.Torch" />
                    
Project file
For projects that support Central Package Management (CPM), copy this XML node into the solution Directory.Packages.props file to version the package.
paket add DiffSharp.Backends.Torch --version 1.0.0-preview-1413494063
                    
#r "nuget: DiffSharp.Backends.Torch, 1.0.0-preview-1413494063"
                    
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
#:package DiffSharp.Backends.Torch@1.0.0-preview-1413494063
                    
#:package directive can be used in C# file-based apps starting in .NET 10 preview 4. Copy this into a .cs file before any lines of code to reference the package.
#addin nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-1413494063&prerelease
                    
Install as a Cake Addin
#tool nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-1413494063&prerelease
                    
Install as a Cake Tool

Package Description

Product Compatible and additional computed target framework versions.
.NET net5.0 is compatible.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed.  net10.0 was computed.  net10.0-android was computed.  net10.0-browser was computed.  net10.0-ios was computed.  net10.0-maccatalyst was computed.  net10.0-macos was computed.  net10.0-tvos was computed.  net10.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (5)

Showing the top 5 NuGet packages that depend on DiffSharp.Backends.Torch:

Package Downloads
DiffSharp-cuda-windows

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cuda-linux

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cpu

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-lite

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

FAkka.Mathnet.Symbolic.withTensorSupported

Package Description

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last Updated
1.0.7 6,470 3/26/2022
1.0.7-preview2044360861 596 3/26/2022
1.0.7-preview1873603133 652 2/21/2022
1.0.7-preview1872895008 632 2/20/2022
1.0.7-preview1872194677 629 2/20/2022
1.0.7-preview1867437105 611 2/19/2022
1.0.7-preview1838897476 625 2/14/2022
1.0.7-preview1838869913 613 2/14/2022
1.0.6 6,851 2/9/2022
1.0.6-preview1838805210 616 2/14/2022
1.0.6-preview1838790927 698 2/14/2022
1.0.6-preview1838781533 620 2/14/2022
1.0.6-preview1838761310 640 2/14/2022
1.0.6-preview1838574327 696 2/14/2022
1.0.6-preview1838238393 642 2/13/2022
1.0.6-preview1837967313 670 2/13/2022
1.0.6-preview1837932839 453 2/13/2022
1.0.6-preview1837857091 453 2/13/2022
1.0.5 3,793 2/9/2022
1.0.4 3,959 2/8/2022
1.0.3 5,058 2/8/2022
1.0.2 4,174 2/8/2022
1.0.1 5,024 11/8/2021
1.0.0-preview-987646120 790 6/30/2021
1.0.0-preview-964642900 758 6/23/2021
1.0.0-preview-964597118 588 6/23/2021
1.0.0-preview-964532207 654 6/23/2021
1.0.0-preview-964414624 660 6/23/2021
1.0.0-preview-962665709 508 6/23/2021
1.0.0-preview-961120541 556 6/22/2021
1.0.0-preview-958984202 594 6/22/2021
1.0.0-preview-783523654 736 4/25/2021
1.0.0-preview-783503343 642 4/25/2021
1.0.0-preview-783410550 674 4/25/2021
1.0.0-preview-781810429 622 4/25/2021
1.0.0-preview-775752139 711 4/22/2021
1.0.0-preview-774228953 677 4/22/2021
1.0.0-preview-769092916 661 4/21/2021
1.0.0-preview-768013090 641 4/20/2021
1.0.0-preview-762002995 628 4/19/2021
1.0.0-preview-761040762 693 4/18/2021
1.0.0-preview-761018834 700 4/18/2021
1.0.0-preview-756065403 595 4/16/2021
1.0.0-preview-755638011 622 4/16/2021
1.0.0-preview-752421465 653 4/15/2021
1.0.0-preview-748176085 653 4/14/2021
1.0.0-preview-746203897 627 4/13/2021
1.0.0-preview-746138300 655 4/13/2021
1.0.0-preview-745205599 612 4/13/2021
1.0.0-preview-739671157 639 4/12/2021
1.0.0-preview-712483117 639 4/2/2021
1.0.0-preview-699281085 589 3/29/2021
1.0.0-preview-699125312 645 3/29/2021
1.0.0-preview-698458610 687 3/29/2021
1.0.0-preview-697743517 703 3/29/2021
1.0.0-preview-697665469 642 3/29/2021
1.0.0-preview-690194555 642 3/26/2021
1.0.0-preview-688124591 627 3/25/2021
1.0.0-preview-687886352 623 3/25/2021
1.0.0-preview-681551353 644 3/24/2021
1.0.0-preview-681104545 675 3/23/2021
1.0.0-preview-680643606 713 3/23/2021
1.0.0-preview-679950457 638 3/23/2021
1.0.0-preview-669022451 650 3/19/2021
1.0.0-preview-643151273 545 3/11/2021
1.0.0-preview-633398743 612 3/8/2021
1.0.0-preview-633348953 644 3/8/2021
1.0.0-preview-621803110 688 3/4/2021
1.0.0-preview-611561611 679 3/1/2021
1.0.0-preview-611172961 589 3/1/2021
1.0.0-preview-593196134 563 2/23/2021
1.0.0-preview-589424126 609 2/22/2021
1.0.0-preview-589402583 639 2/22/2021
1.0.0-preview-586837684 594 2/21/2021
1.0.0-preview-586440747 646 2/21/2021
1.0.0-preview-498549439 644 1/20/2021
1.0.0-preview-485581354 685 1/14/2021
1.0.0-preview-392545720 750 11/30/2020
1.0.0-preview-392233243 697 11/30/2020
1.0.0-preview-392187079 766 11/30/2020
1.0.0-preview-390203270 688 11/29/2020
1.0.0-preview-387146713 782 11/27/2020
1.0.0-preview-386097798 820 11/26/2020
1.0.0-preview-385867359 823 11/26/2020
1.0.0-preview-385523380 703 11/26/2020
1.0.0-preview-384128234 810 11/25/2020
1.0.0-preview-374537774 772 11/20/2020
1.0.0-preview-374468367 666 11/20/2020
1.0.0-preview-368681212 726 11/17/2020
1.0.0-preview-368659044 816 11/17/2020
1.0.0-preview-364746088 849 11/15/2020
1.0.0-preview-364706087 785 11/15/2020
1.0.0-preview-363372268 701 11/14/2020
1.0.0-preview-362038354 746 11/13/2020
1.0.0-preview-362004577 738 11/13/2020
1.0.0-preview-361488593 691 11/13/2020
1.0.0-preview-360710530 733 11/13/2020
1.0.0-preview-359756455 724 11/12/2020
1.0.0-preview-358333968 778 11/11/2020
1.0.0-preview-358184921 780 11/11/2020
1.0.0-preview-358174946 743 11/11/2020
1.0.0-preview-349704450 839 11/6/2020
1.0.0-preview-349564717 817 11/6/2020
1.0.0-preview-343634015 828 11/3/2020
1.0.0-preview-343610434 741 11/3/2020
1.0.0-preview-328097867 1,039 10/26/2020
1.0.0-preview-322875134 779 10/22/2020
1.0.0-preview-315311536 724 10/19/2020
1.0.0-preview-309180753 766 10/15/2020
1.0.0-preview-309013019 798 10/15/2020
1.0.0-preview-308920132 711 10/15/2020
1.0.0-preview-308837132 775 10/15/2020
1.0.0-preview-308751690 741 10/15/2020
1.0.0-preview-308593840 756 10/15/2020
1.0.0-preview-299173506 839 10/10/2020
1.0.0-preview-292259854 843 10/6/2020
1.0.0-preview-291985511 791 10/6/2020
1.0.0-preview-291903007 764 10/6/2020
1.0.0-preview-291722399 794 10/6/2020
1.0.0-preview-284981464 742 10/2/2020
1.0.0-preview-284595614 725 10/2/2020
1.0.0-preview-280886714 797 9/30/2020
1.0.0-preview-278989673 738 9/29/2020
1.0.0-preview-277686264 739 9/29/2020
1.0.0-preview-277653295 746 9/29/2020
1.0.0-preview-275730148 810 9/28/2020
1.0.0-preview-275727262 782 9/28/2020
1.0.0-preview-267667710 827 9/22/2020
1.0.0-preview-263264614 839 9/20/2020
1.0.0-preview-263250971 856 9/20/2020
1.0.0-preview-262623253 729 9/19/2020
1.0.0-preview-258339834 768 9/16/2020
1.0.0-preview-258210544 800 9/16/2020
1.0.0-preview-258177528 839 9/16/2020
1.0.0-preview-258119380 842 9/16/2020
1.0.0-preview-256594931 794 9/16/2020
1.0.0-preview-256435175 868 9/15/2020
1.0.0-preview-253816091 762 9/14/2020
1.0.0-preview-253197654 786 9/14/2020
1.0.0-preview-247523274 726 9/10/2020
1.0.0-preview-247118168 810 9/9/2020
1.0.0-preview-246444372 855 9/9/2020
1.0.0-preview-246434361 813 9/9/2020
1.0.0-preview-246402060 735 9/9/2020
1.0.0-preview-245105781 749 9/8/2020
1.0.0-preview-244918410 816 9/8/2020
1.0.0-preview-243478925 735 9/7/2020
1.0.0-preview-243471084 772 9/7/2020
1.0.0-preview-243323135 873 9/7/2020
1.0.0-preview-1413494063 677 11/2/2021
1.0.0-preview-1405354284 614 10/31/2021
1.0.0-preview-1338129467 669 10/13/2021
1.0.0-preview-1327345305 758 10/11/2021
1.0.0-preview-1325686991 604 10/10/2021
1.0.0-preview-1324682939 751 10/10/2021
1.0.0-preview-1239345497 680 9/15/2021
1.0.0-preview-1227879651 660 9/13/2021
1.0.0-preview-1227810778 666 9/13/2021
1.0.0-preview-1222163389 652 9/10/2021
1.0.0-preview-1177844564 696 8/28/2021
1.0.0-preview-1176119659 604 8/28/2021
1.0.0-preview-1176116073 611 8/28/2021
1.0.0-preview-1176112166 581 8/28/2021
1.0.0-preview-1172193368 601 8/26/2021
1.0.0-preview-1168287221 588 8/25/2021
1.0.0-preview-1147185155 680 8/19/2021
1.0.0-preview-1133286135 722 8/15/2021
1.0.0-preview-1118120224 691 8/10/2021
1.0.0-preview-1111420036 605 8/9/2021
1.0.0-preview-1111385512 540 8/9/2021
1.0.0-preview-1111166736 597 8/9/2021
1.0.0-preview-1088380884 629 8/1/2021
1.0.0-preview-1088311063 633 8/1/2021
1.0.0-preview-1088021240 709 8/1/2021
1.0.0-preview-1083990424 647 7/31/2021
1.0.0-preview-1080710191 629 7/30/2021
1.0.0-preview-1080701269 657 7/30/2021
1.0.0-preview-1079028054 659 7/29/2021
1.0.0-preview-1079000079 659 7/29/2021
1.0.0-preview-1078977564 733 7/29/2021
1.0.0-preview-1069218438 569 7/26/2021
1.0.0-preview-1065692127 698 7/26/2021
1.0.0-preview-1054554829 612 7/22/2021
1.0.0-preview-1054460177 670 7/22/2021
1.0.0-preview-1044919966 652 7/19/2021
1.0.0-preview-1043697034 554 7/19/2021
1.0.0-preview-1001211231 650 7/5/2021
1.0.0-preview-1001204475 644 7/5/2021
0.9.5-preview-243240046 860 9/7/2020
0.9.5-preview-243219862 918 9/7/2020