DiffSharp.Backends.Torch 1.0.6-preview1838790927

This is a prerelease version of DiffSharp.Backends.Torch.
There is a newer version of this package available.
See the version list below for details.
dotnet add package DiffSharp.Backends.Torch --version 1.0.6-preview1838790927
                    
NuGet\Install-Package DiffSharp.Backends.Torch -Version 1.0.6-preview1838790927
                    
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="DiffSharp.Backends.Torch" Version="1.0.6-preview1838790927" />
                    
For projects that support PackageReference, copy this XML node into the project file to reference the package.
<PackageVersion Include="DiffSharp.Backends.Torch" Version="1.0.6-preview1838790927" />
                    
Directory.Packages.props
<PackageReference Include="DiffSharp.Backends.Torch" />
                    
Project file
For projects that support Central Package Management (CPM), copy this XML node into the solution Directory.Packages.props file to version the package.
paket add DiffSharp.Backends.Torch --version 1.0.6-preview1838790927
                    
#r "nuget: DiffSharp.Backends.Torch, 1.0.6-preview1838790927"
                    
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
#:package DiffSharp.Backends.Torch@1.0.6-preview1838790927
                    
#:package directive can be used in C# file-based apps starting in .NET 10 preview 4. Copy this into a .cs file before any lines of code to reference the package.
#addin nuget:?package=DiffSharp.Backends.Torch&version=1.0.6-preview1838790927&prerelease
                    
Install as a Cake Addin
#tool nuget:?package=DiffSharp.Backends.Torch&version=1.0.6-preview1838790927&prerelease
                    
Install as a Cake Tool

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

Product Compatible and additional computed target framework versions.
.NET net5.0 is compatible.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed.  net10.0 was computed.  net10.0-android was computed.  net10.0-browser was computed.  net10.0-ios was computed.  net10.0-maccatalyst was computed.  net10.0-macos was computed.  net10.0-tvos was computed.  net10.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (5)

Showing the top 5 NuGet packages that depend on DiffSharp.Backends.Torch:

Package Downloads
DiffSharp-cuda-windows

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cuda-linux

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cpu

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-lite

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

FAkka.Mathnet.Symbolic.withTensorSupported

Package Description

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last Updated
1.0.7 6,453 3/26/2022
1.0.7-preview2044360861 588 3/26/2022
1.0.7-preview1873603133 642 2/21/2022
1.0.7-preview1872895008 625 2/20/2022
1.0.7-preview1872194677 619 2/20/2022
1.0.7-preview1867437105 602 2/19/2022
1.0.7-preview1838897476 620 2/14/2022
1.0.7-preview1838869913 608 2/14/2022
1.0.6 6,839 2/9/2022
1.0.6-preview1838805210 606 2/14/2022
1.0.6-preview1838790927 693 2/14/2022
1.0.6-preview1838781533 606 2/14/2022
1.0.6-preview1838761310 631 2/14/2022
1.0.6-preview1838574327 685 2/14/2022
1.0.6-preview1838238393 632 2/13/2022
1.0.6-preview1837967313 662 2/13/2022
1.0.6-preview1837932839 448 2/13/2022
1.0.6-preview1837857091 444 2/13/2022
1.0.5 3,784 2/9/2022
1.0.4 3,949 2/8/2022
1.0.3 5,053 2/8/2022
1.0.2 4,164 2/8/2022
1.0.1 5,017 11/8/2021
1.0.0-preview-987646120 779 6/30/2021
1.0.0-preview-964642900 749 6/23/2021
1.0.0-preview-964597118 579 6/23/2021
1.0.0-preview-964532207 644 6/23/2021
1.0.0-preview-964414624 651 6/23/2021
1.0.0-preview-962665709 498 6/23/2021
1.0.0-preview-961120541 544 6/22/2021
1.0.0-preview-958984202 585 6/22/2021
1.0.0-preview-783523654 725 4/25/2021
1.0.0-preview-783503343 630 4/25/2021
1.0.0-preview-783410550 663 4/25/2021
1.0.0-preview-781810429 610 4/25/2021
1.0.0-preview-775752139 701 4/22/2021
1.0.0-preview-774228953 665 4/22/2021
1.0.0-preview-769092916 651 4/21/2021
1.0.0-preview-768013090 629 4/20/2021
1.0.0-preview-762002995 615 4/19/2021
1.0.0-preview-761040762 682 4/18/2021
1.0.0-preview-761018834 688 4/18/2021
1.0.0-preview-756065403 585 4/16/2021
1.0.0-preview-755638011 613 4/16/2021
1.0.0-preview-752421465 643 4/15/2021
1.0.0-preview-748176085 637 4/14/2021
1.0.0-preview-746203897 613 4/13/2021
1.0.0-preview-746138300 643 4/13/2021
1.0.0-preview-745205599 600 4/13/2021
1.0.0-preview-739671157 629 4/12/2021
1.0.0-preview-712483117 632 4/2/2021
1.0.0-preview-699281085 579 3/29/2021
1.0.0-preview-699125312 631 3/29/2021
1.0.0-preview-698458610 677 3/29/2021
1.0.0-preview-697743517 697 3/29/2021
1.0.0-preview-697665469 632 3/29/2021
1.0.0-preview-690194555 634 3/26/2021
1.0.0-preview-688124591 620 3/25/2021
1.0.0-preview-687886352 617 3/25/2021
1.0.0-preview-681551353 634 3/24/2021
1.0.0-preview-681104545 665 3/23/2021
1.0.0-preview-680643606 703 3/23/2021
1.0.0-preview-679950457 628 3/23/2021
1.0.0-preview-669022451 640 3/19/2021
1.0.0-preview-643151273 535 3/11/2021
1.0.0-preview-633398743 606 3/8/2021
1.0.0-preview-633348953 636 3/8/2021
1.0.0-preview-621803110 681 3/4/2021
1.0.0-preview-611561611 672 3/1/2021
1.0.0-preview-611172961 580 3/1/2021
1.0.0-preview-593196134 556 2/23/2021
1.0.0-preview-589424126 604 2/22/2021
1.0.0-preview-589402583 631 2/22/2021
1.0.0-preview-586837684 588 2/21/2021
1.0.0-preview-586440747 637 2/21/2021
1.0.0-preview-498549439 631 1/20/2021
1.0.0-preview-485581354 676 1/14/2021
1.0.0-preview-392545720 738 11/30/2020
1.0.0-preview-392233243 690 11/30/2020
1.0.0-preview-392187079 759 11/30/2020
1.0.0-preview-390203270 679 11/29/2020
1.0.0-preview-387146713 774 11/27/2020
1.0.0-preview-386097798 810 11/26/2020
1.0.0-preview-385867359 817 11/26/2020
1.0.0-preview-385523380 698 11/26/2020
1.0.0-preview-384128234 799 11/25/2020
1.0.0-preview-374537774 765 11/20/2020
1.0.0-preview-374468367 656 11/20/2020
1.0.0-preview-368681212 712 11/17/2020
1.0.0-preview-368659044 809 11/17/2020
1.0.0-preview-364746088 836 11/15/2020
1.0.0-preview-364706087 774 11/15/2020
1.0.0-preview-363372268 688 11/14/2020
1.0.0-preview-362038354 733 11/13/2020
1.0.0-preview-362004577 728 11/13/2020
1.0.0-preview-361488593 682 11/13/2020
1.0.0-preview-360710530 724 11/13/2020
1.0.0-preview-359756455 716 11/12/2020
1.0.0-preview-358333968 768 11/11/2020
1.0.0-preview-358184921 771 11/11/2020
1.0.0-preview-358174946 729 11/11/2020
1.0.0-preview-349704450 828 11/6/2020
1.0.0-preview-349564717 806 11/6/2020
1.0.0-preview-343634015 817 11/3/2020
1.0.0-preview-343610434 731 11/3/2020
1.0.0-preview-328097867 1,028 10/26/2020
1.0.0-preview-322875134 769 10/22/2020
1.0.0-preview-315311536 713 10/19/2020
1.0.0-preview-309180753 755 10/15/2020
1.0.0-preview-309013019 787 10/15/2020
1.0.0-preview-308920132 702 10/15/2020
1.0.0-preview-308837132 765 10/15/2020
1.0.0-preview-308751690 732 10/15/2020
1.0.0-preview-308593840 742 10/15/2020
1.0.0-preview-299173506 825 10/10/2020
1.0.0-preview-292259854 833 10/6/2020
1.0.0-preview-291985511 780 10/6/2020
1.0.0-preview-291903007 752 10/6/2020
1.0.0-preview-291722399 786 10/6/2020
1.0.0-preview-284981464 733 10/2/2020
1.0.0-preview-284595614 714 10/2/2020
1.0.0-preview-280886714 789 9/30/2020
1.0.0-preview-278989673 731 9/29/2020
1.0.0-preview-277686264 729 9/29/2020
1.0.0-preview-277653295 733 9/29/2020
1.0.0-preview-275730148 802 9/28/2020
1.0.0-preview-275727262 777 9/28/2020
1.0.0-preview-267667710 816 9/22/2020
1.0.0-preview-263264614 832 9/20/2020
1.0.0-preview-263250971 849 9/20/2020
1.0.0-preview-262623253 720 9/19/2020
1.0.0-preview-258339834 756 9/16/2020
1.0.0-preview-258210544 794 9/16/2020
1.0.0-preview-258177528 833 9/16/2020
1.0.0-preview-258119380 829 9/16/2020
1.0.0-preview-256594931 785 9/16/2020
1.0.0-preview-256435175 860 9/15/2020
1.0.0-preview-253816091 752 9/14/2020
1.0.0-preview-253197654 780 9/14/2020
1.0.0-preview-247523274 718 9/10/2020
1.0.0-preview-247118168 805 9/9/2020
1.0.0-preview-246444372 850 9/9/2020
1.0.0-preview-246434361 807 9/9/2020
1.0.0-preview-246402060 728 9/9/2020
1.0.0-preview-245105781 741 9/8/2020
1.0.0-preview-244918410 808 9/8/2020
1.0.0-preview-243478925 731 9/7/2020
1.0.0-preview-243471084 763 9/7/2020
1.0.0-preview-243323135 862 9/7/2020
1.0.0-preview-1413494063 670 11/2/2021
1.0.0-preview-1405354284 606 10/31/2021
1.0.0-preview-1338129467 655 10/13/2021
1.0.0-preview-1327345305 747 10/11/2021
1.0.0-preview-1325686991 592 10/10/2021
1.0.0-preview-1324682939 738 10/10/2021
1.0.0-preview-1239345497 670 9/15/2021
1.0.0-preview-1227879651 654 9/13/2021
1.0.0-preview-1227810778 659 9/13/2021
1.0.0-preview-1222163389 643 9/10/2021
1.0.0-preview-1177844564 687 8/28/2021
1.0.0-preview-1176119659 594 8/28/2021
1.0.0-preview-1176116073 603 8/28/2021
1.0.0-preview-1176112166 571 8/28/2021
1.0.0-preview-1172193368 590 8/26/2021
1.0.0-preview-1168287221 579 8/25/2021
1.0.0-preview-1147185155 673 8/19/2021
1.0.0-preview-1133286135 716 8/15/2021
1.0.0-preview-1118120224 684 8/10/2021
1.0.0-preview-1111420036 597 8/9/2021
1.0.0-preview-1111385512 533 8/9/2021
1.0.0-preview-1111166736 587 8/9/2021
1.0.0-preview-1088380884 620 8/1/2021
1.0.0-preview-1088311063 623 8/1/2021
1.0.0-preview-1088021240 702 8/1/2021
1.0.0-preview-1083990424 639 7/31/2021
1.0.0-preview-1080710191 621 7/30/2021
1.0.0-preview-1080701269 648 7/30/2021
1.0.0-preview-1079028054 650 7/29/2021
1.0.0-preview-1079000079 653 7/29/2021
1.0.0-preview-1078977564 727 7/29/2021
1.0.0-preview-1069218438 557 7/26/2021
1.0.0-preview-1065692127 690 7/26/2021
1.0.0-preview-1054554829 606 7/22/2021
1.0.0-preview-1054460177 662 7/22/2021
1.0.0-preview-1044919966 643 7/19/2021
1.0.0-preview-1043697034 546 7/19/2021
1.0.0-preview-1001211231 641 7/5/2021
1.0.0-preview-1001204475 634 7/5/2021
0.9.5-preview-243240046 854 9/7/2020
0.9.5-preview-243219862 913 9/7/2020