DiffSharp.Backends.Torch 1.0.0-preview-1080710191

This is a prerelease version of DiffSharp.Backends.Torch.
There is a newer version of this package available.
See the version list below for details.
dotnet add package DiffSharp.Backends.Torch --version 1.0.0-preview-1080710191
                    
NuGet\Install-Package DiffSharp.Backends.Torch -Version 1.0.0-preview-1080710191
                    
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-1080710191" />
                    
For projects that support PackageReference, copy this XML node into the project file to reference the package.
<PackageVersion Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-1080710191" />
                    
Directory.Packages.props
<PackageReference Include="DiffSharp.Backends.Torch" />
                    
Project file
For projects that support Central Package Management (CPM), copy this XML node into the solution Directory.Packages.props file to version the package.
paket add DiffSharp.Backends.Torch --version 1.0.0-preview-1080710191
                    
#r "nuget: DiffSharp.Backends.Torch, 1.0.0-preview-1080710191"
                    
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
#:package DiffSharp.Backends.Torch@1.0.0-preview-1080710191
                    
#:package directive can be used in C# file-based apps starting in .NET 10 preview 4. Copy this into a .cs file before any lines of code to reference the package.
#addin nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-1080710191&prerelease
                    
Install as a Cake Addin
#tool nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-1080710191&prerelease
                    
Install as a Cake Tool

Package Description

Product Compatible and additional computed target framework versions.
.NET net5.0 is compatible.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed.  net10.0 was computed.  net10.0-android was computed.  net10.0-browser was computed.  net10.0-ios was computed.  net10.0-maccatalyst was computed.  net10.0-macos was computed.  net10.0-tvos was computed.  net10.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (5)

Showing the top 5 NuGet packages that depend on DiffSharp.Backends.Torch:

Package Downloads
DiffSharp-cuda-windows

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cuda-linux

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cpu

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-lite

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

FAkka.Mathnet.Symbolic.withTensorSupported

Package Description

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last Updated
1.0.7 6,468 3/26/2022
1.0.7-preview2044360861 595 3/26/2022
1.0.7-preview1873603133 651 2/21/2022
1.0.7-preview1872895008 631 2/20/2022
1.0.7-preview1872194677 628 2/20/2022
1.0.7-preview1867437105 609 2/19/2022
1.0.7-preview1838897476 624 2/14/2022
1.0.7-preview1838869913 612 2/14/2022
1.0.6 6,850 2/9/2022
1.0.6-preview1838805210 614 2/14/2022
1.0.6-preview1838790927 697 2/14/2022
1.0.6-preview1838781533 619 2/14/2022
1.0.6-preview1838761310 639 2/14/2022
1.0.6-preview1838574327 695 2/14/2022
1.0.6-preview1838238393 641 2/13/2022
1.0.6-preview1837967313 669 2/13/2022
1.0.6-preview1837932839 452 2/13/2022
1.0.6-preview1837857091 452 2/13/2022
1.0.5 3,792 2/9/2022
1.0.4 3,959 2/8/2022
1.0.3 5,058 2/8/2022
1.0.2 4,173 2/8/2022
1.0.1 5,024 11/8/2021
1.0.0-preview-987646120 788 6/30/2021
1.0.0-preview-964642900 756 6/23/2021
1.0.0-preview-964597118 586 6/23/2021
1.0.0-preview-964532207 652 6/23/2021
1.0.0-preview-964414624 658 6/23/2021
1.0.0-preview-962665709 506 6/23/2021
1.0.0-preview-961120541 554 6/22/2021
1.0.0-preview-958984202 592 6/22/2021
1.0.0-preview-783523654 734 4/25/2021
1.0.0-preview-783503343 640 4/25/2021
1.0.0-preview-783410550 672 4/25/2021
1.0.0-preview-781810429 620 4/25/2021
1.0.0-preview-775752139 708 4/22/2021
1.0.0-preview-774228953 675 4/22/2021
1.0.0-preview-769092916 659 4/21/2021
1.0.0-preview-768013090 639 4/20/2021
1.0.0-preview-762002995 626 4/19/2021
1.0.0-preview-761040762 691 4/18/2021
1.0.0-preview-761018834 698 4/18/2021
1.0.0-preview-756065403 592 4/16/2021
1.0.0-preview-755638011 620 4/16/2021
1.0.0-preview-752421465 651 4/15/2021
1.0.0-preview-748176085 651 4/14/2021
1.0.0-preview-746203897 625 4/13/2021
1.0.0-preview-746138300 653 4/13/2021
1.0.0-preview-745205599 610 4/13/2021
1.0.0-preview-739671157 637 4/12/2021
1.0.0-preview-712483117 637 4/2/2021
1.0.0-preview-699281085 587 3/29/2021
1.0.0-preview-699125312 643 3/29/2021
1.0.0-preview-698458610 685 3/29/2021
1.0.0-preview-697743517 701 3/29/2021
1.0.0-preview-697665469 639 3/29/2021
1.0.0-preview-690194555 640 3/26/2021
1.0.0-preview-688124591 625 3/25/2021
1.0.0-preview-687886352 621 3/25/2021
1.0.0-preview-681551353 642 3/24/2021
1.0.0-preview-681104545 673 3/23/2021
1.0.0-preview-680643606 711 3/23/2021
1.0.0-preview-679950457 636 3/23/2021
1.0.0-preview-669022451 648 3/19/2021
1.0.0-preview-643151273 543 3/11/2021
1.0.0-preview-633398743 610 3/8/2021
1.0.0-preview-633348953 642 3/8/2021
1.0.0-preview-621803110 686 3/4/2021
1.0.0-preview-611561611 677 3/1/2021
1.0.0-preview-611172961 587 3/1/2021
1.0.0-preview-593196134 561 2/23/2021
1.0.0-preview-589424126 607 2/22/2021
1.0.0-preview-589402583 637 2/22/2021
1.0.0-preview-586837684 592 2/21/2021
1.0.0-preview-586440747 644 2/21/2021
1.0.0-preview-498549439 641 1/20/2021
1.0.0-preview-485581354 683 1/14/2021
1.0.0-preview-392545720 748 11/30/2020
1.0.0-preview-392233243 695 11/30/2020
1.0.0-preview-392187079 764 11/30/2020
1.0.0-preview-390203270 686 11/29/2020
1.0.0-preview-387146713 780 11/27/2020
1.0.0-preview-386097798 818 11/26/2020
1.0.0-preview-385867359 821 11/26/2020
1.0.0-preview-385523380 701 11/26/2020
1.0.0-preview-384128234 808 11/25/2020
1.0.0-preview-374537774 770 11/20/2020
1.0.0-preview-374468367 664 11/20/2020
1.0.0-preview-368681212 724 11/17/2020
1.0.0-preview-368659044 814 11/17/2020
1.0.0-preview-364746088 847 11/15/2020
1.0.0-preview-364706087 783 11/15/2020
1.0.0-preview-363372268 699 11/14/2020
1.0.0-preview-362038354 744 11/13/2020
1.0.0-preview-362004577 736 11/13/2020
1.0.0-preview-361488593 689 11/13/2020
1.0.0-preview-360710530 731 11/13/2020
1.0.0-preview-359756455 722 11/12/2020
1.0.0-preview-358333968 776 11/11/2020
1.0.0-preview-358184921 778 11/11/2020
1.0.0-preview-358174946 741 11/11/2020
1.0.0-preview-349704450 837 11/6/2020
1.0.0-preview-349564717 815 11/6/2020
1.0.0-preview-343634015 826 11/3/2020
1.0.0-preview-343610434 739 11/3/2020
1.0.0-preview-328097867 1,037 10/26/2020
1.0.0-preview-322875134 777 10/22/2020
1.0.0-preview-315311536 722 10/19/2020
1.0.0-preview-309180753 763 10/15/2020
1.0.0-preview-309013019 796 10/15/2020
1.0.0-preview-308920132 709 10/15/2020
1.0.0-preview-308837132 773 10/15/2020
1.0.0-preview-308751690 739 10/15/2020
1.0.0-preview-308593840 753 10/15/2020
1.0.0-preview-299173506 837 10/10/2020
1.0.0-preview-292259854 841 10/6/2020
1.0.0-preview-291985511 789 10/6/2020
1.0.0-preview-291903007 762 10/6/2020
1.0.0-preview-291722399 792 10/6/2020
1.0.0-preview-284981464 740 10/2/2020
1.0.0-preview-284595614 722 10/2/2020
1.0.0-preview-280886714 795 9/30/2020
1.0.0-preview-278989673 736 9/29/2020
1.0.0-preview-277686264 737 9/29/2020
1.0.0-preview-277653295 744 9/29/2020
1.0.0-preview-275730148 808 9/28/2020
1.0.0-preview-275727262 780 9/28/2020
1.0.0-preview-267667710 825 9/22/2020
1.0.0-preview-263264614 837 9/20/2020
1.0.0-preview-263250971 854 9/20/2020
1.0.0-preview-262623253 727 9/19/2020
1.0.0-preview-258339834 766 9/16/2020
1.0.0-preview-258210544 798 9/16/2020
1.0.0-preview-258177528 837 9/16/2020
1.0.0-preview-258119380 840 9/16/2020
1.0.0-preview-256594931 791 9/16/2020
1.0.0-preview-256435175 866 9/15/2020
1.0.0-preview-253816091 760 9/14/2020
1.0.0-preview-253197654 784 9/14/2020
1.0.0-preview-247523274 724 9/10/2020
1.0.0-preview-247118168 808 9/9/2020
1.0.0-preview-246444372 853 9/9/2020
1.0.0-preview-246434361 811 9/9/2020
1.0.0-preview-246402060 733 9/9/2020
1.0.0-preview-245105781 747 9/8/2020
1.0.0-preview-244918410 814 9/8/2020
1.0.0-preview-243478925 733 9/7/2020
1.0.0-preview-243471084 770 9/7/2020
1.0.0-preview-243323135 870 9/7/2020
1.0.0-preview-1413494063 676 11/2/2021
1.0.0-preview-1405354284 614 10/31/2021
1.0.0-preview-1338129467 669 10/13/2021
1.0.0-preview-1327345305 758 10/11/2021
1.0.0-preview-1325686991 604 10/10/2021
1.0.0-preview-1324682939 751 10/10/2021
1.0.0-preview-1239345497 680 9/15/2021
1.0.0-preview-1227879651 660 9/13/2021
1.0.0-preview-1227810778 666 9/13/2021
1.0.0-preview-1222163389 651 9/10/2021
1.0.0-preview-1177844564 696 8/28/2021
1.0.0-preview-1176119659 604 8/28/2021
1.0.0-preview-1176116073 611 8/28/2021
1.0.0-preview-1176112166 581 8/28/2021
1.0.0-preview-1172193368 601 8/26/2021
1.0.0-preview-1168287221 588 8/25/2021
1.0.0-preview-1147185155 680 8/19/2021
1.0.0-preview-1133286135 721 8/15/2021
1.0.0-preview-1118120224 691 8/10/2021
1.0.0-preview-1111420036 605 8/9/2021
1.0.0-preview-1111385512 540 8/9/2021
1.0.0-preview-1111166736 597 8/9/2021
1.0.0-preview-1088380884 629 8/1/2021
1.0.0-preview-1088311063 632 8/1/2021
1.0.0-preview-1088021240 709 8/1/2021
1.0.0-preview-1083990424 646 7/31/2021
1.0.0-preview-1080710191 629 7/30/2021
1.0.0-preview-1080701269 657 7/30/2021
1.0.0-preview-1079028054 659 7/29/2021
1.0.0-preview-1079000079 659 7/29/2021
1.0.0-preview-1078977564 733 7/29/2021
1.0.0-preview-1069218438 569 7/26/2021
1.0.0-preview-1065692127 698 7/26/2021
1.0.0-preview-1054554829 612 7/22/2021
1.0.0-preview-1054460177 670 7/22/2021
1.0.0-preview-1044919966 652 7/19/2021
1.0.0-preview-1043697034 554 7/19/2021
1.0.0-preview-1001211231 649 7/5/2021
1.0.0-preview-1001204475 644 7/5/2021
0.9.5-preview-243240046 858 9/7/2020
0.9.5-preview-243219862 916 9/7/2020